Home
Class 12
MATHS
Given that log2(3)=a,log3(5)=b,log7(2)=c...

Given that `log_2(3)=a,log_3(5)=b,log_7(2)=c`, express the logrithm of the number 63 to the base 140 in terms of a,b & c.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of expressing \(\log_{140}(63)\) in terms of \(a\), \(b\), and \(c\), we will follow a systematic approach using logarithmic properties. ### Step-by-Step Solution: 1. **Identify the given logarithmic values**: \[ a = \log_2(3), \quad b = \log_3(5), \quad c = \log_7(2) \] 2. **Express \(\log_{140}(63)\)** using the change of base formula: \[ \log_{140}(63) = \frac{\log(63)}{\log(140)} \] 3. **Factor the numbers**: - \(63 = 7 \times 3^2\) - \(140 = 7 \times 5 \times 2^2\) 4. **Use logarithmic properties** to expand \(\log(63)\) and \(\log(140)\): \[ \log(63) = \log(7) + 2\log(3) \] \[ \log(140) = \log(7) + \log(5) + 2\log(2) \] 5. **Substitute these into the expression for \(\log_{140}(63)\)**: \[ \log_{140}(63) = \frac{\log(7) + 2\log(3)}{\log(7) + \log(5) + 2\log(2)} \] 6. **Divide the numerator and denominator by \(\log(7)\)**: \[ \log_{140}(63) = \frac{1 + 2\frac{\log(3)}{\log(7)}}{1 + \frac{\log(5)}{\log(7)} + 2\frac{\log(2)}{\log(7)}} \] 7. **Express the fractions in terms of \(a\), \(b\), and \(c\)**: - From the definitions: - \(\frac{\log(3)}{\log(7)} = \log_7(3) = a \cdot c\) - \(\frac{\log(5)}{\log(7)} = \log_7(5) = b \cdot c\) - \(\frac{\log(2)}{\log(7)} = \log_7(2) = c\) 8. **Substituting these values**: \[ \log_{140}(63) = \frac{1 + 2ac}{1 + bc + 2c} \] ### Final Answer: Thus, we can express \(\log_{140}(63)\) in terms of \(a\), \(b\), and \(c\) as: \[ \log_{140}(63) = \frac{1 + 2ac}{1 + bc + 2c} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|5 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

If log_(b)5=a,log_(b)2.5=c,and5^(x)=2.5 , then x=

Given 3 log x + (1)/(2) log y = 2 , express y in term of x.

log_(2)a = 3, log_(3)b = 2, log_(4) c = 1 Find the value of 3a + 2b - 10c

If log_(3)4=a , log_(5)3=b , then find the value of log_(3)10 in terms of a and b.

Given log_(2)x = m and log_(5) y = n (i) Express 2^(m-3) in terms of x. (ii) Express 5^(3n + 2) in terms of y.

If a, b, c are positive numbers such that a^(log_(3)7) =27, b^(log_(7)11)=49, c^(log_(11)25)=sqrt(11) , then the sum of digits of S=a^((log_(3)7)^(2))+b^((log_(7)11)^(2))+c^((log_(11)25)^(2)) is :

Given log_(10)2 = a and log_(10)3 = b . If 3^(x+2) = 45 , then the value of x in terms of a and b is-

If log_(a)b=2, log_(b)c=2, and log_(3) c= 3 + log_(3) a,then the value of c/(ab)is ________.

If log_(a)b=2, log_(b)c=2, and log_(3) c= 3 + log_(3) a,then the value of c/(ab)is ________.

Given log_(10 ) x = 2a and log_(10) y = (b)/(2) . If log_(10) P = 3a - 2b express P in terms of x and y.