Home
Class 12
MATHS
Find x if (x+1)(2x-3)=4....

Find `x` if `(x+1)(2x-3)=4`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((x+1)(2x-3)=4\), we will follow these steps: ### Step 1: Expand the left-hand side We start by expanding the left-hand side of the equation: \[ (x + 1)(2x - 3) = x \cdot 2x + x \cdot (-3) + 1 \cdot 2x + 1 \cdot (-3) \] This simplifies to: \[ 2x^2 - 3x + 2x - 3 = 2x^2 - x - 3 \] ### Step 2: Set the equation to zero Now, we set the equation equal to 4: \[ 2x^2 - x - 3 = 4 \] Next, we subtract 4 from both sides to set the equation to zero: \[ 2x^2 - x - 3 - 4 = 0 \] This simplifies to: \[ 2x^2 - x - 7 = 0 \] ### Step 3: Identify coefficients In the quadratic equation \(ax^2 + bx + c = 0\), we identify: - \(a = 2\) - \(b = -1\) - \(c = -7\) ### Step 4: Apply the quadratic formula We will use the quadratic formula to find the values of \(x\): \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Substituting the values of \(a\), \(b\), and \(c\): \[ x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 2 \cdot (-7)}}{2 \cdot 2} \] This simplifies to: \[ x = \frac{1 \pm \sqrt{1 + 56}}{4} \] ### Step 5: Simplify the expression under the square root Now we simplify the expression under the square root: \[ x = \frac{1 \pm \sqrt{57}}{4} \] ### Step 6: Write the final answers Thus, the solutions for \(x\) are: \[ x = \frac{1 + \sqrt{57}}{4} \quad \text{and} \quad x = \frac{1 - \sqrt{57}}{4} \] ### Summary of the solution: The final answers are: \[ x = \frac{1 + \sqrt{57}}{4} \quad \text{and} \quad x = \frac{1 - \sqrt{57}}{4} \] ---
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|5 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

Find Lt_(xto1)(2x^(2)+3x+4) .

Find the solution set of ((x-1)(x-2)^(2)(x+4))/((x+2)(x-3)) ge 0

If A = [[-4,1],[3,2]] find f(A) if f(x) =x^2 - 2x+3

Evaluate: int((x-1)(x-2)(x-3))/((x-4)(x-5)(x-6))dx

Evaluate: int((x-1)(x-2)(x-3))/((x-4)(x-5)(x-6))dx

Evaluate: int((x-1)(x-2)(x-3))/((x-4)(x-5)(x-6))dx

If 2x - (1)/(2x) =4 , find : (ii) 8x^(3) - (1)/( 8x^3)

Evaluate the following limits : Lim_(x to oo) ((x+1)(2x+3))/((x+2)(3x+4))

Find the derivative of (x^(3) - 3x^(2) + 4)(4x^(5) + x^(2) -1) :

find lim_(x->1) ((x^4-3x^2+2)/(x^3-5x^2+3x+1))