Home
Class 12
MATHS
The value of log((8-3sqrt7))(8+3sqrt7) i...

The value of `log_((8-3sqrt7))(8+3sqrt7)` is

A

-2

B

-1

C

0

D

Not defined

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the value of \( \log_{(8 - 3\sqrt{7})}(8 + 3\sqrt{7}) \), we can follow these steps: ### Step-by-step Solution: 1. **Identify the logarithmic expression**: We need to evaluate \( \log_{(8 - 3\sqrt{7})}(8 + 3\sqrt{7}) \). 2. **Rationalize the argument**: To simplify the expression, we multiply and divide \( 8 + 3\sqrt{7} \) by \( 8 - 3\sqrt{7} \): \[ \log_{(8 - 3\sqrt{7})}(8 + 3\sqrt{7}) = \log_{(8 - 3\sqrt{7})} \left( \frac{(8 + 3\sqrt{7})(8 - 3\sqrt{7})}{(8 - 3\sqrt{7})} \right) \] 3. **Simplify the numerator**: The numerator simplifies using the difference of squares: \[ (8 + 3\sqrt{7})(8 - 3\sqrt{7}) = 8^2 - (3\sqrt{7})^2 = 64 - 63 = 1 \] Thus, we have: \[ \log_{(8 - 3\sqrt{7})} \left( \frac{1}{(8 - 3\sqrt{7})} \right) \] 4. **Apply the logarithm property**: Using the property of logarithms \( \log_b \left( \frac{1}{a} \right) = -\log_b(a) \): \[ \log_{(8 - 3\sqrt{7})} \left( \frac{1}{(8 - 3\sqrt{7})} \right) = -\log_{(8 - 3\sqrt{7})}(8 - 3\sqrt{7}) \] 5. **Evaluate the logarithm**: Since \( \log_a(a) = 1 \): \[ -\log_{(8 - 3\sqrt{7})}(8 - 3\sqrt{7}) = -1 \] 6. **Final answer**: Therefore, the value of \( \log_{(8 - 3\sqrt{7})}(8 + 3\sqrt{7}) \) is: \[ \boxed{-1} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|5 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|4 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

The value of log_((sqrt(2)-1))(5sqrt(2)-7) is :

(3-sqrt7)(3+sqrt7)=?

The value of 6+ log_(3//2) (1/(3sqrt2)sqrt(4-1/(3sqrt2)sqrt(4-1/(3sqrt2)sqrt(4-1/(3sqrt2)...)))) is ________.

The value of log_((9)/(4))((1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3)))))...oo) is

The value 4^(5log_(4sqrt(2))(3-sqrt(6))-6log_8(sqrt(3)-sqrt(2))) is

The value of (log49sqrt 7 + log25sqrt 5 - log4sqrt 2)/log17.5 , is (a)5 (b) 2 (c) 5/2 (d) 3/2

Find the value of (4/(log_(2)(2sqrt3))+2/(log_(3) (2sqrt3)))^(2) .

The value of log_(8)17/(log_(9)23)-log_(2sqrt2)17/(log_(3)23) is equal to

The value of ("log" 49 sqrt(7) + "log" 25sqrt(5) - "log" 4sqrt(2))/("log" 17.5) , is