Home
Class 12
MATHS
The value of (0.16)^("log"(2.5)((1)/(3) ...

The value of `(0.16)^("log"_(2.5)((1)/(3) + (1)/(3^(2)) + (1)/(3^(3)) + …."to" oo))`, is

A

2

B

4

C

6

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( (0.16)^{\log_{2.5}\left(\frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \ldots\right)} \), we will follow these steps: ### Step 1: Simplify the Infinite Series The expression inside the logarithm is an infinite geometric series: \[ S = \frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \ldots \] This is a geometric series where the first term \( a = \frac{1}{3} \) and the common ratio \( r = \frac{1}{3} \). The sum of an infinite geometric series can be calculated using the formula: \[ S_{\infty} = \frac{a}{1 - r} \] Substituting the values: \[ S_{\infty} = \frac{\frac{1}{3}}{1 - \frac{1}{3}} = \frac{\frac{1}{3}}{\frac{2}{3}} = \frac{1}{2} \] ### Step 2: Substitute the Sum into the Logarithm Now we substitute \( S_{\infty} \) back into the logarithm: \[ (0.16)^{\log_{2.5}\left(\frac{1}{2}\right)} \] ### Step 3: Rewrite \( 0.16 \) Next, we rewrite \( 0.16 \) as a fraction: \[ 0.16 = \frac{16}{100} = \frac{4}{25} \] So we have: \[ \left(\frac{4}{25}\right)^{\log_{2.5}\left(\frac{1}{2}\right)} \] ### Step 4: Apply Logarithmic Properties Using the property of logarithms \( a^{\log_b(c)} = c^{\log_b(a)} \), we can rewrite the expression: \[ \left(\frac{4}{25}\right)^{\log_{2.5}\left(\frac{1}{2}\right)} = \left(\frac{1}{2}\right)^{\log_{2.5}\left(\frac{4}{25}\right)} \] ### Step 5: Simplify \( \frac{4}{25} \) Now, we can express \( \frac{4}{25} \) as: \[ \frac{4}{25} = \left(\frac{2}{5}\right)^2 \] Thus, we can write: \[ \log_{2.5}\left(\frac{4}{25}\right) = \log_{2.5}\left(\left(\frac{2}{5}\right)^2\right) = 2 \log_{2.5}\left(\frac{2}{5}\right) \] ### Step 6: Substitute Back Substituting this back gives: \[ \left(\frac{1}{2}\right)^{2 \log_{2.5}\left(\frac{2}{5}\right)} = \left(\frac{1}{2}\right)^{\log_{2.5}\left(\frac{2}{5}\right)^2} \] ### Step 7: Final Simplification Using the property of logarithms again, we can simplify: \[ \left(\frac{1}{2}\right)^{\log_{2.5}\left(\frac{4}{25}\right)} = \left(\frac{4}{25}\right)^{\log_{2.5}\left(\frac{1}{2}\right)} \] This evaluates to: \[ \left(\frac{1}{2}\right)^{-2} = 4 \] ### Final Result Thus, the value of the original expression is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|5 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|4 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

The value of [(0.16)^(log_(2.5)(1/3+1/3^2+1/3^3+….+oo))]^(1/2) is a) 1 b) 2 c) 3 d) -1

The value of 2^("log"3^(5)) - 5^("log"3^(2)) is

The value of (3+ "log" 343)/(2 + (1)/(2)"log" ((49)/(4)) + (1)/(3) "log" ((1)/(125))) , is

The value of (1)/((1+a)(2+a))+(1)/((2+a)(3+a))+(1)/((3+a)(4+a))"......." " upto " oo is (where, a is constant)

(0. 5)^((log_(1/3) ((x+5)/(x^2+3)))>1

The value of log 2+2 (1/5+1/3.(1)/(5^(3))+1/5.(1_)/(5^(5))+..+infty) is

Find (1)/(3)+(1)/(2.3^(2))+(1)/(3.3^(3))+(1)/(4.3^(4))+….oo=?

The value of 1-log_(e)2+(log_(e)2)^(2)/(2!)-(log_(e)2)^(3)/(3!)+.. is

The value of (1+2(log)_3 2)/((1+(log)_3 2)^2)+((log)_6 2)^2 is 2 (b) 3 (c) 4 (d) 1

The value of (1+2(log_3 2)/((1+(log)_3 2)^2)+((log)_6 2)^2 is 2 (b) 3 (c) 4 (d) 1