Home
Class 12
MATHS
log2log2(sqrt(sqrt(...sqrtsqrt2)))/(nTim...

`log_2log_2(sqrt(sqrt(...sqrtsqrt2)))/(nTimes)` is equal to

A

0

B

1

C

n

D

`-n`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \log_2 \log_2(\sqrt{\sqrt{\ldots \sqrt{2}}}) \) where the square root operation is applied \( n \) times, we can follow these steps: ### Step 1: Express the nested square roots The expression \( \sqrt{\sqrt{\ldots \sqrt{2}}} \) (with \( n \) square roots) can be rewritten in exponential form. We know that: \[ \sqrt{2} = 2^{1/2} \] Thus, applying the square root \( n \) times gives us: \[ \sqrt{\sqrt{\ldots \sqrt{2}}} = 2^{1/2^n} \] ### Step 2: Apply the logarithm Now we need to find \( \log_2(\sqrt{\sqrt{\ldots \sqrt{2}}}) \): \[ \log_2(2^{1/2^n}) = \frac{1}{2^n} \cdot \log_2(2) \] Since \( \log_2(2) = 1 \), we have: \[ \log_2(\sqrt{\sqrt{\ldots \sqrt{2}}}) = \frac{1}{2^n} \] ### Step 3: Apply the logarithm again Next, we need to find \( \log_2(\log_2(\sqrt{\sqrt{\ldots \sqrt{2}}})) \): \[ \log_2\left(\frac{1}{2^n}\right) = \log_2(2^{-n}) = -n \] ### Conclusion Thus, the final result is: \[ \log_2 \log_2(\sqrt{\sqrt{\ldots \sqrt{2}}}) = -n \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|4 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|20 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

log_7log_7sqrt(7(sqrt(7sqrt(7))))=

log_(3sqrt(2))324

If log_(7)log_(7) sqrt(7sqrt(7sqrt(7)))=1-a log_(7)2 and log_(15)log_(15) sqrt(15sqrt(15sqrt(15sqrt(15))))=1-b log_(15)2 , then a+b=

The value of "log"_(sqrt(2)) sqrt(2sqrt(2sqrt(2sqrt(2)))) , is

Y=log(4/(sqrt(x+2)+sqrt(2-x)))

2^(log_(sqrt(2))15)=

log((sqrt2-1)/(sqrt2+1))

Prove that log_(7) log_(7)sqrt(7sqrt((7sqrt7))) = 1-3 log_(7) 2 .

The value of (log)_(sqrt(4+2sqrt(2))sqrt(4-2sqrt(2)))2^9 is...........

If log_(x)log_(18)(sqrt(2)+sqrt(8))=(1)/(3) , then the value of 32x=