Home
Class 12
MATHS
If f(n)=prod(i=2)^(n-1)logi(i+1), the va...

If `f(n)=prod_(i=2)^(n-1)log_i(i+1)`, the value of `sum_(k=1)^100f(2^k)` equals

A

5010

B

5050

C

5100

D

5049

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the function \( f(n) \) defined as: \[ f(n) = \prod_{i=2}^{n-1} \log_i(i+1) \] And then find the value of: \[ \sum_{k=1}^{100} f(2^k) \] ### Step 1: Express \( f(n) \) We start with the expression for \( f(n) \): \[ f(n) = \prod_{i=2}^{n-1} \log_i(i+1) \] Using the change of base formula for logarithms, we can rewrite \( \log_i(i+1) \) as: \[ \log_i(i+1) = \frac{\log(i+1)}{\log(i)} \] Thus, we can express \( f(n) \) as: \[ f(n) = \prod_{i=2}^{n-1} \frac{\log(i+1)}{\log(i)} \] ### Step 2: Simplify the product Now, we can expand the product: \[ f(n) = \frac{\log(3)}{\log(2)} \cdot \frac{\log(4)}{\log(3)} \cdot \frac{\log(5)}{\log(4)} \cdots \frac{\log(n)}{\log(n-1)} \] Notice that in this product, all intermediate terms cancel out, leaving us with: \[ f(n) = \frac{\log(n)}{\log(2)} \] ### Step 3: Evaluate \( f(2^k) \) Now, we substitute \( n = 2^k \): \[ f(2^k) = \frac{\log(2^k)}{\log(2)} = \frac{k \log(2)}{\log(2)} = k \] ### Step 4: Calculate the summation Now we need to calculate: \[ \sum_{k=1}^{100} f(2^k) = \sum_{k=1}^{100} k \] Using the formula for the sum of the first \( n \) natural numbers: \[ \sum_{k=1}^{n} k = \frac{n(n+1)}{2} \] For \( n = 100 \): \[ \sum_{k=1}^{100} k = \frac{100 \times 101}{2} = 5050 \] ### Final Answer Thus, the value of \( \sum_{k=1}^{100} f(2^k) \) is: \[ \boxed{5050} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|9 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|12 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|4 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

If f(n)=prod_(r=1)^(n)cos r,n in N , then

If sum_(i=1)^(n) cos theta_(i)=n , then the value of sum_(i=1)^(n) sin theta_(i) .

The value of sum_(n=0)^(100)i^(n!) equals (where i=sqrt(-1))

For any n positive numbers a_(1),a_(2),…,a_(n) such that sum_(i=1)^(n) a_(i)=alpha , the least value of sum_(i=1)^(n) a_(i)^(-1) , is

If sum_(r=1)^n I(r)=(3^n -1) , then sum_(r=1)^n 1/(I(r)) is equal to :

If sum_(i=1)^200 sin^-1 x_i=100pi, then sum _(i=1)^200 x_i^2 is equal to

For each positive integer n , let f(n+1)=n(-1)^(n+1)-2f(n) and f(1)=(2010)dot Then sum_(k=1)^(2009)f(K) is equal to 335 (b) 336 (c) 331 (d) 333

If f(x)=sum_(i=1)^(oo) x/({(i-1)x+1}(ix+1)) , then f(2017)+f(1/2017) is equal to

Let f(n)= sum_(k=1)^(n) k^2 ^"(n )C_k)^ 2 then the value of f(5) equals

If x_k = (sectheta)^(1/2^k)+ (tan theta)^(1/(2^k) and y_k = (sectheta)^(1/(2^k))-(tan theta)^(1/2^k) , then value of 3y_n prod_(k=0)^n (x_k) is equal to

ARIHANT MATHS ENGLISH-LOGARITHM AND THEIR PROPERTIES-Exercise (Single Option Correct Type Questions)
  1. Given that log(2)=0. 3010 , the number of digits in the number 2000^(...

    Text Solution

    |

  2. There exists a positive number k such that log2x+ log4x+ log8x= logkx...

    Text Solution

    |

  3. If x1,x2 & x3 are the three real solutions of the equation x^(log10^2...

    Text Solution

    |

  4. If f(n)=prod(i=2)^(n-1)logi(i+1), the value of sum(k=1)^100f(2^k) equa...

    Text Solution

    |

  5. If log(3)27.logx7=log(27)x.log(7)3, the least value of x is

    Text Solution

    |

  6. If x = log(5) (1000) and y=log(7) (2058), then

    Text Solution

    |

  7. Solve for x if x(4x-4)= -4

    Text Solution

    |

  8. If xn > x(n-1) > ..........> x3 > x1 > 1. then the value of log(x1) [...

    Text Solution

    |

  9. If (x(y+z-x))/log x = (y(z+x-y))/log y = (z(x+y-z))/log z ," prove th...

    Text Solution

    |

  10. If y = a^(1/(1-log(a) x)) and z = a^(1/(1-log(a)y))",then prove that ...

    Text Solution

    |

  11. If (log)(0. 3)(x-1)<(log)(0. 09)(x-1), then x lies in the interval (2,...

    Text Solution

    |

  12. The value of a^x-b^y is (wherex=sqrt(logab)and y=sqrt(logba),agt0,bgt0...

    Text Solution

    |

  13. If x=1+log(a) bc, y=1+log(b) ca, z=1+log(c) ab, then (xyz)/(xy+yz+zx) ...

    Text Solution

    |

  14. The value of a^((logb(logbx))/(logb a)), is

    Text Solution

    |

  15. Find the value of 49^((1-log7(2)))+5^(-log5(4) is

    Text Solution

    |

  16. The number of real values of the parameter k for which (log(16)x)^(2) ...

    Text Solution

    |

  17. Solve the equation x^(log(x)(x+3)^(2))=16.

    Text Solution

    |

  18. The point on the graph y=log2log6{2^sqrt(2x+1)+4} whose y coordinate i...

    Text Solution

    |

  19. Given ,log2=0.301 and log3=0.477, then the number of digits before dec...

    Text Solution

    |

  20. The values of x, satisfying the equation for AA a > 0, 2log(x) a + lo...

    Text Solution

    |