Home
Class 12
MATHS
If log(3)27.logx7=log(27)x.log(7)3, the ...

If `log_(3)27.log_x7=log_(27)x.log_(7)3`, the least value of x is

A

`7^-3`

B

`3^-7`

C

`7^3`

D

`3^7`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given in the problem, we start with the equation: \[ \log_{3}27 \cdot \log_{x}7 = \log_{27}x \cdot \log_{7}3 \] ### Step 1: Simplify \(\log_{3}27\) and \(\log_{27}x\) We know that \(27 = 3^3\), so we can use the change of base formula: \[ \log_{3}27 = \log_{3}(3^3) = 3 \] Now, we rewrite the equation: \[ 3 \cdot \log_{x}7 = \log_{27}x \cdot \log_{7}3 \] ### Step 2: Express \(\log_{27}x\) Using the change of base formula again, we can express \(\log_{27}x\): \[ \log_{27}x = \frac{\log_{3}x}{\log_{3}27} = \frac{\log_{3}x}{3} \] Substituting this back into the equation gives: \[ 3 \cdot \log_{x}7 = \frac{\log_{3}x}{3} \cdot \log_{7}3 \] ### Step 3: Rearranging the equation Now we can rearrange the equation: \[ 3 \cdot \log_{x}7 = \frac{\log_{3}x \cdot \log_{7}3}{3} \] Multiplying both sides by 3 to eliminate the fraction: \[ 9 \cdot \log_{x}7 = \log_{3}x \cdot \log_{7}3 \] ### Step 4: Express \(\log_{x}7\) Using the change of base formula again, we express \(\log_{x}7\): \[ \log_{x}7 = \frac{\log_{3}7}{\log_{3}x} \] Substituting this into the equation gives: \[ 9 \cdot \frac{\log_{3}7}{\log_{3}x} = \log_{3}x \cdot \log_{7}3 \] ### Step 5: Cross-multiply Cross-multiplying gives: \[ 9 \cdot \log_{3}7 = \log_{3}x \cdot \log_{3}x \cdot \log_{7}3 \] This simplifies to: \[ 9 \cdot \log_{3}7 = (\log_{3}x)^2 \cdot \log_{7}3 \] ### Step 6: Solve for \(\log_{3}x\) Let \(y = \log_{3}x\). The equation becomes: \[ 9 \cdot \log_{3}7 = y^2 \cdot \log_{7}3 \] Rearranging gives: \[ y^2 = \frac{9 \cdot \log_{3}7}{\log_{7}3} \] ### Step 7: Find the least value of \(x\) Taking the square root of both sides: \[ y = \sqrt{\frac{9 \cdot \log_{3}7}{\log_{7}3}} = 3 \sqrt{\frac{\log_{3}7}{\log_{7}3}} \] Now, since \(y = \log_{3}x\), we have: \[ \log_{3}x = 3 \sqrt{\frac{\log_{3}7}{\log_{7}3}} \] Converting back to \(x\): \[ x = 3^{3 \sqrt{\frac{\log_{3}7}{\log_{7}3}}} \] Thus, the least value of \(x\) is: \[ x = 3^{3 \sqrt{\frac{\log_{3}7}{\log_{7}3}}} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|9 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|12 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|4 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

If log_2 (log_2 (log_3 x)) = log_2 (log_3 (log_2 y))=0 , then the value of (x+y) is

If 3^(((log_3 7))^x)=7^(((log_7 3))^x) , then the value of x will be

If log_(2)x + log_(2)x=7 , then =

If log_(2) x xx log_(3) x = log_(2) x + log_(3) x , then find x .

Suppose that a and b are positive real numbers such that log_(27)a+log_9(b)=7/2 and log_(27)b+log_9a=2/3 .Then the value of the ab equals

If "log"_(e) 2."log"_(x) 27 = "log"_(10) 8."log"_(e) 10 , then x =

If log_(2)(x + y) = log_(3)(x - y) = (log 25)/(log 0.2) , find the values of x and y.

If log_(y)x +log_(x)y = 7 , then the value of (log_(y)x)^(2) +(log_(x)y)^(2) , is

If log_(175)5x=log_(343)7x , then the value of log_(42)(x^(4)-2x^(2)+7) is

Evaluate: log_(9)27 - log_(27)9

ARIHANT MATHS ENGLISH-LOGARITHM AND THEIR PROPERTIES-Exercise (Single Option Correct Type Questions)
  1. Given that log(2)=0. 3010 , the number of digits in the number 2000^(...

    Text Solution

    |

  2. There exists a positive number k such that log2x+ log4x+ log8x= logkx...

    Text Solution

    |

  3. If x1,x2 & x3 are the three real solutions of the equation x^(log10^2...

    Text Solution

    |

  4. If f(n)=prod(i=2)^(n-1)logi(i+1), the value of sum(k=1)^100f(2^k) equa...

    Text Solution

    |

  5. If log(3)27.logx7=log(27)x.log(7)3, the least value of x is

    Text Solution

    |

  6. If x = log(5) (1000) and y=log(7) (2058), then

    Text Solution

    |

  7. Solve for x if x(4x-4)= -4

    Text Solution

    |

  8. If xn > x(n-1) > ..........> x3 > x1 > 1. then the value of log(x1) [...

    Text Solution

    |

  9. If (x(y+z-x))/log x = (y(z+x-y))/log y = (z(x+y-z))/log z ," prove th...

    Text Solution

    |

  10. If y = a^(1/(1-log(a) x)) and z = a^(1/(1-log(a)y))",then prove that ...

    Text Solution

    |

  11. If (log)(0. 3)(x-1)<(log)(0. 09)(x-1), then x lies in the interval (2,...

    Text Solution

    |

  12. The value of a^x-b^y is (wherex=sqrt(logab)and y=sqrt(logba),agt0,bgt0...

    Text Solution

    |

  13. If x=1+log(a) bc, y=1+log(b) ca, z=1+log(c) ab, then (xyz)/(xy+yz+zx) ...

    Text Solution

    |

  14. The value of a^((logb(logbx))/(logb a)), is

    Text Solution

    |

  15. Find the value of 49^((1-log7(2)))+5^(-log5(4) is

    Text Solution

    |

  16. The number of real values of the parameter k for which (log(16)x)^(2) ...

    Text Solution

    |

  17. Solve the equation x^(log(x)(x+3)^(2))=16.

    Text Solution

    |

  18. The point on the graph y=log2log6{2^sqrt(2x+1)+4} whose y coordinate i...

    Text Solution

    |

  19. Given ,log2=0.301 and log3=0.477, then the number of digits before dec...

    Text Solution

    |

  20. The values of x, satisfying the equation for AA a > 0, 2log(x) a + lo...

    Text Solution

    |