Home
Class 12
MATHS
The value of a^x-b^y is (wherex=sqrt(log...

The value of `a^x-b^y` is (where`x=sqrt(log_ab)`and `y=sqrt(log_ba),agt0,bgt0` and `a,bne1`)

A

1

B

2

C

0

D

-1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a^x - b^y \) where \( x = \sqrt{\log_a b} \) and \( y = \sqrt{\log_b a} \). Let's break this down step by step. ### Step 1: Write down the expressions for \( x \) and \( y \) We have: \[ x = \sqrt{\log_a b} \] \[ y = \sqrt{\log_b a} \] ### Step 2: Rewrite \( a^x \) We can express \( a^x \) as: \[ a^x = a^{\sqrt{\log_a b}} \] Using the property of logarithms, we can rewrite this as: \[ a^{\sqrt{\log_a b}} = a^{\sqrt{\frac{\log b}{\log a}}} \] ### Step 3: Simplify \( a^x \) Using the property \( a^{\log_a b} = b \), we can rewrite: \[ a^{\sqrt{\log_a b}} = b^{\frac{1}{\sqrt{\log_a b}}} \] This means: \[ a^x = b^{\frac{1}{\sqrt{\log_a b}}} \] ### Step 4: Rewrite \( b^y \) Now, let's express \( b^y \): \[ b^y = b^{\sqrt{\log_b a}} \] Using the property of logarithms again, we can rewrite this as: \[ b^{\sqrt{\log_b a}} = a^{\frac{1}{\sqrt{\log_b a}}} \] ### Step 5: Simplify \( b^y \) Using the property \( b^{\log_b a} = a \), we can rewrite: \[ b^{\sqrt{\log_b a}} = a^{\frac{1}{\sqrt{\log_b a}}} \] This means: \[ b^y = a^{\frac{1}{\sqrt{\log_b a}}} \] ### Step 6: Find \( a^x - b^y \) Now we have: \[ a^x = b^{\frac{1}{\sqrt{\log_a b}}} \] \[ b^y = a^{\frac{1}{\sqrt{\log_b a}}} \] Thus, we can find: \[ a^x - b^y = b^{\frac{1}{\sqrt{\log_a b}}} - a^{\frac{1}{\sqrt{\log_b a}}} \] ### Step 7: Evaluate \( a^x - b^y \) Since \( \sqrt{\log_a b} \) and \( \sqrt{\log_b a} \) are reciprocals, we find that: \[ a^x = b^y \] Thus: \[ a^x - b^y = 0 \] ### Final Answer The value of \( a^x - b^y \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|9 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|12 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|4 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

The equation sqrt(1+log_(x) sqrt27) log_(3) x+1 = 0 has

The value of the determinant |{:(1,log_ba),(log_ab,1):}| is equal to

A curve is represented parametrically by the equations x=f(t)=a^(In(b^t))and y=g(t)=b^(-In(a^(t)))a,bgt0 and a ne 1, b ne 1" Where "t in R. The value of (d^(2)y)/(dx^(2)) at the point where f(t)=g(t) is

The area bounded by the curves xsqrt3+y=2log_(e)(x-ysqrt3)-2log_(e)2, y=sqrt3x, y=-(1)/(sqrt3)x+2, is

Solve : sqrt(1+log_(0.04)x)+sqrt(3+log_(0.2)x)=1

If log_(a)5=x and log_(a)7=y , then log_(a)sqrt(1,4)=

Prove that: (log_a(log_ba))/(log_b(log_ab))=-log_ab

Statement-1: 3^("log"_(2) 7) -7^("log"_(2)3) = 0 Statement-2: x^("log"_(a)y) = y^("log"_(a)x), " where "x gt 0, y gt 0" and "a gt 0, a ne 1

Given a^2+b^2=c^2 . Prove that log_(b+c)a+log_(c-b)a=2 log_(c+b)a.log_(c-b)a,forallagt0,ane1 c-bgt0 , c+bgt0 c-bne1 , c+bne1 .

y=log[sqrt(x-a)+sqrt(x-b)]

ARIHANT MATHS ENGLISH-LOGARITHM AND THEIR PROPERTIES-Exercise (Single Option Correct Type Questions)
  1. Given that log(2)=0. 3010 , the number of digits in the number 2000^(...

    Text Solution

    |

  2. There exists a positive number k such that log2x+ log4x+ log8x= logkx...

    Text Solution

    |

  3. If x1,x2 & x3 are the three real solutions of the equation x^(log10^2...

    Text Solution

    |

  4. If f(n)=prod(i=2)^(n-1)logi(i+1), the value of sum(k=1)^100f(2^k) equa...

    Text Solution

    |

  5. If log(3)27.logx7=log(27)x.log(7)3, the least value of x is

    Text Solution

    |

  6. If x = log(5) (1000) and y=log(7) (2058), then

    Text Solution

    |

  7. Solve for x if x(4x-4)= -4

    Text Solution

    |

  8. If xn > x(n-1) > ..........> x3 > x1 > 1. then the value of log(x1) [...

    Text Solution

    |

  9. If (x(y+z-x))/log x = (y(z+x-y))/log y = (z(x+y-z))/log z ," prove th...

    Text Solution

    |

  10. If y = a^(1/(1-log(a) x)) and z = a^(1/(1-log(a)y))",then prove that ...

    Text Solution

    |

  11. If (log)(0. 3)(x-1)<(log)(0. 09)(x-1), then x lies in the interval (2,...

    Text Solution

    |

  12. The value of a^x-b^y is (wherex=sqrt(logab)and y=sqrt(logba),agt0,bgt0...

    Text Solution

    |

  13. If x=1+log(a) bc, y=1+log(b) ca, z=1+log(c) ab, then (xyz)/(xy+yz+zx) ...

    Text Solution

    |

  14. The value of a^((logb(logbx))/(logb a)), is

    Text Solution

    |

  15. Find the value of 49^((1-log7(2)))+5^(-log5(4) is

    Text Solution

    |

  16. The number of real values of the parameter k for which (log(16)x)^(2) ...

    Text Solution

    |

  17. Solve the equation x^(log(x)(x+3)^(2))=16.

    Text Solution

    |

  18. The point on the graph y=log2log6{2^sqrt(2x+1)+4} whose y coordinate i...

    Text Solution

    |

  19. Given ,log2=0.301 and log3=0.477, then the number of digits before dec...

    Text Solution

    |

  20. The values of x, satisfying the equation for AA a > 0, 2log(x) a + lo...

    Text Solution

    |