Home
Class 12
MATHS
If x=1+log(a) bc, y=1+log(b) ca, z=1+log...

If `x=1+log_(a) bc, y=1+log_(b) ca, z=1+log_(c) ab`, then `(xyz)/(xy+yz+zx)` is equal to

A

0

B

1

C

-1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\frac{xyz}{xy + yz + zx}\) given: \[ x = 1 + \log_a(bc), \quad y = 1 + \log_b(ca), \quad z = 1 + \log_c(ab) \] ### Step 1: Rewrite \(x\), \(y\), and \(z\) Using the properties of logarithms, we can rewrite \(x\), \(y\), and \(z\) as follows: \[ x = 1 + \log_a(bc) = \log_a(a) + \log_a(bc) = \log_a(abc) \] Similarly, we can express \(y\) and \(z\): \[ y = 1 + \log_b(ca) = \log_b(b) + \log_b(ca) = \log_b(abc) \] \[ z = 1 + \log_c(ab) = \log_c(c) + \log_c(ab) = \log_c(abc) \] ### Step 2: Calculate \(xyz\) Now, we can calculate \(xyz\): \[ xyz = \log_a(abc) \cdot \log_b(abc) \cdot \log_c(abc) \] Using the change of base formula, we have: \[ \log_a(abc) = \frac{\log(abc)}{\log(a)}, \quad \log_b(abc) = \frac{\log(abc)}{\log(b)}, \quad \log_c(abc) = \frac{\log(abc)}{\log(c)} \] Thus, we can express \(xyz\) as: \[ xyz = \frac{\log(abc)^3}{\log(a) \log(b) \log(c)} \] ### Step 3: Calculate \(xy + yz + zx\) Next, we calculate \(xy + yz + zx\): \[ xy = \log_a(abc) \cdot \log_b(abc) = \frac{\log(abc)^2}{\log(a) \log(b)} \] \[ yz = \log_b(abc) \cdot \log_c(abc) = \frac{\log(abc)^2}{\log(b) \log(c)} \] \[ zx = \log_c(abc) \cdot \log_a(abc) = \frac{\log(abc)^2}{\log(c) \log(a)} \] Combining these, we have: \[ xy + yz + zx = \frac{\log(abc)^2}{\log(a) \log(b)} + \frac{\log(abc)^2}{\log(b) \log(c)} + \frac{\log(abc)^2}{\log(c) \log(a)} \] Factoring out \(\log(abc)^2\): \[ xy + yz + zx = \log(abc)^2 \left( \frac{1}{\log(a) \log(b)} + \frac{1}{\log(b) \log(c)} + \frac{1}{\log(c) \log(a)} \right) \] ### Step 4: Substitute into the expression Now substituting \(xyz\) and \(xy + yz + zx\) into the expression \(\frac{xyz}{xy + yz + zx}\): \[ \frac{xyz}{xy + yz + zx} = \frac{\frac{\log(abc)^3}{\log(a) \log(b) \log(c)}}{\log(abc)^2 \left( \frac{1}{\log(a) \log(b)} + \frac{1}{\log(b) \log(c)} + \frac{1}{\log(c) \log(a)} \right)} \] This simplifies to: \[ \frac{\log(abc)}{\frac{1}{\log(a) \log(b)} + \frac{1}{\log(b) \log(c)} + \frac{1}{\log(c) \log(a)}} \] ### Step 5: Simplify the denominator The denominator can be simplified as follows: \[ \frac{1}{\log(a) \log(b)} + \frac{1}{\log(b) \log(c)} + \frac{1}{\log(c) \log(a)} = \frac{\log(b) \log(c) + \log(c) \log(a) + \log(a) \log(b)}{\log(a) \log(b) \log(c)} \] ### Final Result Thus, we have: \[ \frac{xyz}{xy + yz + zx} = \frac{\log(abc) \cdot \log(a) \log(b) \log(c)}{\log(b) \log(c) + \log(c) \log(a) + \log(a) \log(b)} = 1 \] So, the final answer is: \[ \frac{xyz}{xy + yz + zx} = 1 \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|9 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|12 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|4 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

If x=log_(a)bc, y=log_(b)ac and z=log_(c)ab then which of the following is equal to unity ?

if x =log_a (bc), y= log_b (ca) and z=log_c(ab) then 1/(x+1)+1/(y+1)+1/(z+1)

If x=log_(2a) a,y=log_(3a) 2a and z=log_(4a) 3a then prove that xyz+1=2yz

If x=1+(log)_a b c ,\ y=1+(log)_b c a\ a n d\ z=1+(log)_c a b ,\ then prove that x y z=x y+y z+z xdot

If x ="log"_(a)(bc), y ="log"_(b)(ca) " and "z = "log"_(c)(ab), then which of the following is correct?

Show that : log_(a)m div log_(ab)m = 1 + log_(a)b

log (log_(ab) a +(1)/(log_(b)ab) is (where ab ne 1)

If cos^(-1)x + cos^(-1)y + cos^(-1)z = pi, then xy + yz +zx is equal to

Let x, y in (0, 1) such that there exists a positive number a (ne 1) satsifying log_(x) a + log_(y) a = 4 log_(xy) a Then the value of ((x)/(y))^(((y)/(x))) is …

If log_a(ab)=x then log_b(ab) is equals to

ARIHANT MATHS ENGLISH-LOGARITHM AND THEIR PROPERTIES-Exercise (Single Option Correct Type Questions)
  1. Given that log(2)=0. 3010 , the number of digits in the number 2000^(...

    Text Solution

    |

  2. There exists a positive number k such that log2x+ log4x+ log8x= logkx...

    Text Solution

    |

  3. If x1,x2 & x3 are the three real solutions of the equation x^(log10^2...

    Text Solution

    |

  4. If f(n)=prod(i=2)^(n-1)logi(i+1), the value of sum(k=1)^100f(2^k) equa...

    Text Solution

    |

  5. If log(3)27.logx7=log(27)x.log(7)3, the least value of x is

    Text Solution

    |

  6. If x = log(5) (1000) and y=log(7) (2058), then

    Text Solution

    |

  7. Solve for x if x(4x-4)= -4

    Text Solution

    |

  8. If xn > x(n-1) > ..........> x3 > x1 > 1. then the value of log(x1) [...

    Text Solution

    |

  9. If (x(y+z-x))/log x = (y(z+x-y))/log y = (z(x+y-z))/log z ," prove th...

    Text Solution

    |

  10. If y = a^(1/(1-log(a) x)) and z = a^(1/(1-log(a)y))",then prove that ...

    Text Solution

    |

  11. If (log)(0. 3)(x-1)<(log)(0. 09)(x-1), then x lies in the interval (2,...

    Text Solution

    |

  12. The value of a^x-b^y is (wherex=sqrt(logab)and y=sqrt(logba),agt0,bgt0...

    Text Solution

    |

  13. If x=1+log(a) bc, y=1+log(b) ca, z=1+log(c) ab, then (xyz)/(xy+yz+zx) ...

    Text Solution

    |

  14. The value of a^((logb(logbx))/(logb a)), is

    Text Solution

    |

  15. Find the value of 49^((1-log7(2)))+5^(-log5(4) is

    Text Solution

    |

  16. The number of real values of the parameter k for which (log(16)x)^(2) ...

    Text Solution

    |

  17. Solve the equation x^(log(x)(x+3)^(2))=16.

    Text Solution

    |

  18. The point on the graph y=log2log6{2^sqrt(2x+1)+4} whose y coordinate i...

    Text Solution

    |

  19. Given ,log2=0.301 and log3=0.477, then the number of digits before dec...

    Text Solution

    |

  20. The values of x, satisfying the equation for AA a > 0, 2log(x) a + lo...

    Text Solution

    |