Home
Class 12
MATHS
Find the value of 49^((1-log7(2)))+5^(-l...

Find the value of `49^((1-log_7(2)))+5^(-log_5(4)` is

A

10.5

B

11.5

C

12.5

D

13.5

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( 49^{(1 - \log_7(2))} + 5^{(-\log_5(4))} \), we can follow these steps: ### Step 1: Rewrite the bases First, we can rewrite \( 49 \) as \( 7^2 \): \[ 49^{(1 - \log_7(2))} = (7^2)^{(1 - \log_7(2))} \] ### Step 2: Apply the power of a power property Using the property of exponents \( (a^m)^n = a^{m \cdot n} \): \[ (7^2)^{(1 - \log_7(2))} = 7^{2(1 - \log_7(2))} \] ### Step 3: Distribute the exponent Distributing the exponent gives: \[ 7^{2(1 - \log_7(2))} = 7^{2 - 2\log_7(2)} \] ### Step 4: Use the logarithmic identity Using the identity \( a^{\log_a(b)} = b \), we can rewrite \( 2\log_7(2) \) as \( \log_7(2^2) = \log_7(4) \): \[ 7^{2 - 2\log_7(2)} = \frac{7^2}{7^{\log_7(4)}} = \frac{49}{4} \] ### Step 5: Simplify the second term Now, let's simplify the second term \( 5^{(-\log_5(4))} \): Using the identity \( a^{-\log_a(b)} = \frac{1}{b} \): \[ 5^{(-\log_5(4))} = \frac{1}{4} \] ### Step 6: Combine the results Now we can combine both parts: \[ 49^{(1 - \log_7(2))} + 5^{(-\log_5(4))} = \frac{49}{4} + \frac{1}{4} = \frac{49 + 1}{4} = \frac{50}{4} = \frac{25}{2} \] ### Final Answer Thus, the final value is: \[ \frac{25}{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|9 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|12 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|4 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

Let M denote antilog ""_(32) 0.6 and N denote the value of 49^((1-log_(7)2))+5^(-log_(5)4) . Then M.N is :

Let L denote antilog_32 0.6 and M denote the number of positive integers which have the characteristic 4, when the base of log is 5, and N denote the value of 49^((1-(log)_7 2))+5^(-(log)_5 4.) Find the value of (L M)/Ndot

Find the value of (1/49)^(1+log_(7)2) + 5^(-log_((1//5))(7) .

Find the value of (1/49)^(1+log_(7)2) + 5^(-log_((1//5))(7) .

Find the value of : log _5 0.2

Find the value of (1/(49))^(1+(log)_7 2)+5^(-1(log)_((1/5))(7))

Find the value of 3^((4)/(log_(2)9))+27^((1)/(log_(49)9))+81^((1)/(log_(4)3))

Find the value of : log_(0.2) 5

Find the value of log_(2) (1/(7^(log_(7) 0.125))) .

Find the value of sqrt((log_(0.5)4)^(2)) .

ARIHANT MATHS ENGLISH-LOGARITHM AND THEIR PROPERTIES-Exercise (Single Option Correct Type Questions)
  1. Given that log(2)=0. 3010 , the number of digits in the number 2000^(...

    Text Solution

    |

  2. There exists a positive number k such that log2x+ log4x+ log8x= logkx...

    Text Solution

    |

  3. If x1,x2 & x3 are the three real solutions of the equation x^(log10^2...

    Text Solution

    |

  4. If f(n)=prod(i=2)^(n-1)logi(i+1), the value of sum(k=1)^100f(2^k) equa...

    Text Solution

    |

  5. If log(3)27.logx7=log(27)x.log(7)3, the least value of x is

    Text Solution

    |

  6. If x = log(5) (1000) and y=log(7) (2058), then

    Text Solution

    |

  7. Solve for x if x(4x-4)= -4

    Text Solution

    |

  8. If xn > x(n-1) > ..........> x3 > x1 > 1. then the value of log(x1) [...

    Text Solution

    |

  9. If (x(y+z-x))/log x = (y(z+x-y))/log y = (z(x+y-z))/log z ," prove th...

    Text Solution

    |

  10. If y = a^(1/(1-log(a) x)) and z = a^(1/(1-log(a)y))",then prove that ...

    Text Solution

    |

  11. If (log)(0. 3)(x-1)<(log)(0. 09)(x-1), then x lies in the interval (2,...

    Text Solution

    |

  12. The value of a^x-b^y is (wherex=sqrt(logab)and y=sqrt(logba),agt0,bgt0...

    Text Solution

    |

  13. If x=1+log(a) bc, y=1+log(b) ca, z=1+log(c) ab, then (xyz)/(xy+yz+zx) ...

    Text Solution

    |

  14. The value of a^((logb(logbx))/(logb a)), is

    Text Solution

    |

  15. Find the value of 49^((1-log7(2)))+5^(-log5(4) is

    Text Solution

    |

  16. The number of real values of the parameter k for which (log(16)x)^(2) ...

    Text Solution

    |

  17. Solve the equation x^(log(x)(x+3)^(2))=16.

    Text Solution

    |

  18. The point on the graph y=log2log6{2^sqrt(2x+1)+4} whose y coordinate i...

    Text Solution

    |

  19. Given ,log2=0.301 and log3=0.477, then the number of digits before dec...

    Text Solution

    |

  20. The values of x, satisfying the equation for AA a > 0, 2log(x) a + lo...

    Text Solution

    |