Home
Class 12
MATHS
If log(10)5=a and log(10)3=b,then...

If `log_(10)5=a` and `log_(10)3=b`,then

A

`log_(10)8=3(1-a)`

B

`log_(40)15=((a+b))/((3-2a))`

C

`log_(243)32=((1-a)/b)`

D

All of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to verify the correctness of the given logarithmic expressions based on the values of \( \log_{10} 5 = a \) and \( \log_{10} 3 = b \). ### Step-by-step Solution: 1. **Option 1: Verify \( \log_{10} 8 = 3(1 - a) \)** We know: \[ \log_{10} 8 = \log_{10} (2^3) = 3 \log_{10} 2 \] Using the change of base formula, we can express \( \log_{10} 2 \) in terms of \( a \) and \( b \): \[ 1 = \log_{10} 10 = \log_{10} (5 \cdot 2) = \log_{10} 5 + \log_{10} 2 = a + \log_{10} 2 \] Therefore: \[ \log_{10} 2 = 1 - a \] Substituting this into our expression for \( \log_{10} 8 \): \[ \log_{10} 8 = 3(1 - a) \] Thus, Option 1 is verified. 2. **Option 2: Verify \( \log_{40} 15 = \frac{a + b}{3 - 2a} \)** We can express \( \log_{40} 15 \) using the change of base formula: \[ \log_{40} 15 = \frac{\log_{10} 15}{\log_{10} 40} \] We know: \[ \log_{10} 15 = \log_{10} (5 \cdot 3) = \log_{10} 5 + \log_{10} 3 = a + b \] And: \[ \log_{10} 40 = \log_{10} (8 \cdot 5) = \log_{10} 8 + \log_{10} 5 = 3(1 - a) + a = 3 - 2a \] Therefore: \[ \log_{40} 15 = \frac{a + b}{3 - 2a} \] Thus, Option 2 is verified. 3. **Option 3: Verify \( \log_{243} 32 = \frac{1 - a}{b} \)** We can express \( \log_{243} 32 \) using the change of base formula: \[ \log_{243} 32 = \frac{\log_{10} 32}{\log_{10} 243} \] We know: \[ \log_{10} 32 = \log_{10} (2^5) = 5 \log_{10} 2 = 5(1 - a) \] And: \[ \log_{10} 243 = \log_{10} (3^5) = 5 \log_{10} 3 = 5b \] Therefore: \[ \log_{243} 32 = \frac{5(1 - a)}{5b} = \frac{1 - a}{b} \] Thus, Option 3 is verified. 4. **Conclusion:** Since all three options are verified, the answer is: \[ \text{Option 4: All of these} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|12 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|10 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|20 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

If (log)_(10)5=aa n d(log)_(10)3=b ,t h e n (A) (log)_(30)8=(3(1-a))/(b+1) (B) (log)_(40)15=(a+b)/(3-2a) (C) (log)_(243)32=(1-a)/b (d) none of these

If log_(10)2 = a and log_(10) 3 = b , express each of the following in terms of 'a' and 'b' : (i) log 12 (ii) log 2.25 (iii) "log"_(2) (1)/(4) (iv) log 5.4 (v) log 60 (vi) "log 3" (1)/(8)

If log_(10) 2 = a, log_(10)3 = b" then "log_(0.72)(9.6) in terms of a and b is equal to

Let log_(10)2=a and log_(10)3=b determine the following in term of a and b log_(4)100+2log_(27)100

If log_(3)4=a , log_(5)3=b , then find the value of log_(3)10 in terms of a and b.

Given log_(10)2 = a and log_(10)3 = b . If 3^(x+2) = 45 , then the value of x in terms of a and b is-

If log_(10) 2 = 0.3010 and log_(10) 3 = 0.477 , then find the number of digits in the following numbers: (a) 3^(40)" "(b) 2^(32) xx 5^(25)" (c) 24^(24)

Given log_(10 ) x = 2a and log_(10) y = (b)/(2) . If log_(10) P = 3a - 2b express P in terms of x and y.

Given log_(10 ) x = 2a and log_(10) y = (b)/(2) . Write 10 ^(a) in terms of x.

Given log_(10 ) x = 2a and log_(10) y = (b)/(2) . Write 10 ^(2b+1) in terms of y .