Home
Class 12
MATHS
Let log2N=a1+b1,log3N=a2+b2 and log5N=a3...

Let `log_2N=a_1+b_1,log_3N=a_2+b_2` and `log_5N=a_3+b_3`, where `a_1,a_2,a_3notin1` and `b_1,b_2 b_3 in [0,1)`.
If `a_1=6,a_2=4` and `a_3=3`,the difference of largest and smallest integral values of N, is

A

2

B

8

C

14

D

20

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the integral values of \( N \) based on the logarithmic expressions provided. We will analyze each logarithmic equation step by step. ### Step 1: Analyze \( \log_2 N = a_1 + b_1 \) Given: - \( a_1 = 6 \) - \( b_1 \in [0, 1) \) Using the property of logarithms, we can rewrite this as: \[ N = 2^{a_1 + b_1} = 2^{6 + b_1} = 2^6 \cdot 2^{b_1} = 64 \cdot 2^{b_1} \] Since \( b_1 \) can vary from \( 0 \) to just below \( 1 \): - Minimum value of \( N \): \[ N_{\text{min}} = 64 \cdot 2^0 = 64 \] - Maximum value of \( N \): \[ N_{\text{max}} < 64 \cdot 2^1 = 128 \] Thus, \( N \) can take values in the interval \( [64, 128) \). ### Step 2: Analyze \( \log_3 N = a_2 + b_2 \) Given: - \( a_2 = 4 \) - \( b_2 \in [0, 1) \) Using the property of logarithms: \[ N = 3^{a_2 + b_2} = 3^{4 + b_2} = 3^4 \cdot 3^{b_2} = 81 \cdot 3^{b_2} \] Since \( b_2 \) can vary from \( 0 \) to just below \( 1 \): - Minimum value of \( N \): \[ N_{\text{min}} = 81 \cdot 3^0 = 81 \] - Maximum value of \( N \): \[ N_{\text{max}} < 81 \cdot 3^1 = 243 \] Thus, \( N \) can take values in the interval \( [81, 243) \). ### Step 3: Analyze \( \log_5 N = a_3 + b_3 \) Given: - \( a_3 = 3 \) - \( b_3 \in [0, 1) \) Using the property of logarithms: \[ N = 5^{a_3 + b_3} = 5^{3 + b_3} = 5^3 \cdot 5^{b_3} = 125 \cdot 5^{b_3} \] Since \( b_3 \) can vary from \( 0 \) to just below \( 1 \): - Minimum value of \( N \): \[ N_{\text{min}} = 125 \cdot 5^0 = 125 \] - Maximum value of \( N \): \[ N_{\text{max}} < 125 \cdot 5^1 = 625 \] Thus, \( N \) can take values in the interval \( [125, 625) \). ### Step 4: Find the intersection of the intervals Now we have the following intervals for \( N \): 1. From \( \log_2 N \): \( [64, 128) \) 2. From \( \log_3 N \): \( [81, 243) \) 3. From \( \log_5 N \): \( [125, 625) \) To find the common values of \( N \), we need the intersection of these intervals: - The intersection of \( [64, 128) \) and \( [81, 243) \) is \( [81, 128) \). - The intersection of \( [81, 128) \) and \( [125, 625) \) is \( [125, 128) \). ### Step 5: Determine the integral values of \( N \) From the interval \( [125, 128) \), the only integer values are: - \( 125 \) - \( 126 \) - \( 127 \) ### Step 6: Calculate the difference between the largest and smallest integral values of \( N \) The largest integral value is \( 127 \) and the smallest integral value is \( 125 \). Thus, the difference is: \[ \text{Difference} = 127 - 125 = 2 \] ### Final Answer: The difference of the largest and smallest integral values of \( N \) is \( 2 \). ---
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|10 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Matching Type Questions)|1 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|9 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

If a_1, a_2, a_3,.....a_n are in H.P. and a_1 a_2+a_2 a_3+a_3 a_4+.......a_(n-1) a_n=ka_1 a_n , then k is equal to

Let a_1,a_2,a_3…… ,a_n be in G.P such that 3a_1+7a_2 +3a_3-4a_5=0 Then common ratio of G.P can be

If the points (a_1, b_1),\ \ (a_2, b_2) and (a_1+a_2,\ b_1+b_2) are collinear, show that a_1b_2=a_2b_1 .

For any three sets A_1,A_2, A_3 , let B_1=A_1, B_2 = A_2-A_1 and B_3 = A_3-(A_1uuA_2) , then which one of the following statement is always true

Let A_1 , A_2 …..,A_3 be n arithmetic means between a and b. Then the common difference of the AP is

A sequence of number a_1, a_2, a_3,…..,a_n is generated by the rule a_(n+1) = 2a_(n) . If a_(7) - a_(6) = 96 , then what is the value of a_(7) ?

Evaluate: /_\ |[1+a_1, a_2, a_3],[a_1, 1+a_2, a_3],[a_1, a_2, 1+a_3]|

Evaluate: /_\ |[1+a_1, a_2, a_3],[a_1, 1+a_2, a_3],[a_1, a_2, 1+a_3]|

If (a_2a_3)/(a_1a_4) = (a_2+a_3)/(a_1+a_4)=3 ((a_2 -a_3)/(a_1-a_4)) then a_1,a_2, a_3 , a_4 are in :

Let a_1,a_2,a_3 ….and b_1 , b_2 , b_3 … be two geometric progressions with a_1= 2 sqrt(3) and b_1= 52/9 sqrt(3) If 3a_99b_99=104 then find the value of a_1 b_1+ a_2 b_2+…+a_nb_n