Home
Class 12
MATHS
If log(7)12=a ,log(12)24=b, then find v...

If `log_(7)12=a` `,log_(12)24=b`, then find value of `log_(54)168` in terms of a and b.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \log_{54} 168 \) in terms of \( a \) and \( b \), where \( \log_{7} 12 = a \) and \( \log_{12} 24 = b \), we can follow these steps: ### Step 1: Express \( \log_{54} 168 \) using the change of base formula Using the change of base formula, we can express \( \log_{54} 168 \) as: \[ \log_{54} 168 = \frac{\log_{7} 168}{\log_{7} 54} \] ### Step 2: Simplify \( \log_{7} 168 \) We can break down \( 168 \) as follows: \[ 168 = 7 \times 24 \] Thus, \[ \log_{7} 168 = \log_{7} (7 \times 24) = \log_{7} 7 + \log_{7} 24 = 1 + \log_{7} 24 \] ### Step 3: Express \( \log_{7} 24 \) in terms of \( a \) and \( b \) Using the property of logarithms, we can express \( \log_{7} 24 \) as follows: \[ \log_{7} 24 = \frac{\log_{12} 24}{\log_{12} 7} \] From the problem, we know that \( \log_{12} 24 = b \). Now we need to find \( \log_{12} 7 \). Using the property of logarithms: \[ \log_{12} 7 = \frac{1}{\log_{7} 12} = \frac{1}{a} \] Thus, \[ \log_{7} 24 = \frac{b}{\frac{1}{a}} = ab \] ### Step 4: Substitute back into \( \log_{7} 168 \) Now substituting \( \log_{7} 24 \) back into the equation for \( \log_{7} 168 \): \[ \log_{7} 168 = 1 + ab \] ### Step 5: Simplify \( \log_{7} 54 \) Next, we need to express \( \log_{7} 54 \). We can break down \( 54 \) as follows: \[ 54 = 2 \times 27 = 2 \times 3^3 \] Thus, \[ \log_{7} 54 = \log_{7} (2 \times 27) = \log_{7} 2 + \log_{7} 27 = \log_{7} 2 + 3 \log_{7} 3 \] ### Step 6: Express \( \log_{7} 2 \) and \( \log_{7} 3 \) in terms of \( a \) and \( b \) To express \( \log_{7} 2 \) and \( \log_{7} 3 \), we can use the relationships we have: - \( \log_{12} 2 = \log_{12} 12 - \log_{12} 6 = 1 - \log_{12} 6 \) - \( \log_{12} 3 = \frac{1}{\log_{3} 12} = \frac{1}{\frac{1}{\log_{12} 3}} \) However, we can also express \( \log_{7} 2 \) and \( \log_{7} 3 \) using the known values of \( a \) and \( b \). ### Step 7: Combine the results Finally, we can combine the results to express \( \log_{54} 168 \): \[ \log_{54} 168 = \frac{1 + ab}{\log_{7} 54} \] ### Final Result Thus, the value of \( \log_{54} 168 \) in terms of \( a \) and \( b \) is: \[ \log_{54} 168 = \frac{1 + ab}{\log_{7} 54} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|6 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

If log_(3)4=a , log_(5)3=b , then find the value of log_(3)10 in terms of a and b.

If log_(7) 2 = m , then find log_(49) 28 in terms of m.

If log_(b) n = 2 and log_(n) 2b = 2 , then find the value of b.

If log_(10) 2 = a, log_(10)3 = b" then "log_(0.72)(9.6) in terms of a and b is equal to

If log 23=z, find the value of log 2,300 in terms of z.

If log_(10)2 = a and log_(10) 3 = b , express each of the following in terms of 'a' and 'b' : (i) log 12 (ii) log 2.25 (iii) "log"_(2) (1)/(4) (iv) log 5.4 (v) log 60 (vi) "log 3" (1)/(8)

Given log_(10)2 = a and log_(10)3 = b . If 3^(x+2) = 45 , then the value of x in terms of a and b is-

If a=(log)_(12)18 , b=(log)_(24)54 , then find the value of a b+5(a-b)dot

If log_(sqrt8) b = 3 1/3 , then find the value of b.

Let log_(10)2=a and log_(10)3=b determine the following in term of a and b log_(4)100+2log_(27)100