Home
Class 12
MATHS
If log(3)4=a,log(5)3=b, then find the v...

If `log_(3)4=a`,`log_(5)3=b`, then find the value of `log_(3)10` in terms of a and b.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \log_{3}10 \) in terms of \( a \) and \( b \), where \( \log_{3}4 = a \) and \( \log_{5}3 = b \), we can follow these steps: ### Step 1: Express \( \log_{3}4 \) in terms of \( \log_{2} \) We know that: \[ \log_{3}4 = \log_{3}(2^2) = 2\log_{3}2 \] Since \( \log_{3}4 = a \), we can write: \[ 2\log_{3}2 = a \implies \log_{3}2 = \frac{a}{2} \] **Hint:** Use the property of logarithms that states \( \log_{b}(m^n) = n \cdot \log_{b}(m) \). ### Step 2: Express \( \log_{5}3 \) in terms of \( \log_{3} \) From the given \( \log_{5}3 = b \), we can express it in terms of base 3: \[ \log_{5}3 = \frac{\log_{3}3}{\log_{3}5} = \frac{1}{\log_{3}5} \] Thus, we have: \[ \log_{3}5 = \frac{1}{b} \] **Hint:** Use the change of base formula for logarithms: \( \log_{a}b = \frac{1}{\log_{b}a} \). ### Step 3: Express \( \log_{3}10 \) Now, we can express \( \log_{3}10 \) as: \[ \log_{3}10 = \log_{3}(2 \cdot 5) = \log_{3}2 + \log_{3}5 \] Substituting the values we found: \[ \log_{3}10 = \frac{a}{2} + \frac{1}{b} \] **Hint:** Use the property of logarithms that states \( \log_{b}(mn) = \log_{b}m + \log_{b}n \). ### Step 4: Combine the terms To combine the terms, we need a common denominator: \[ \log_{3}10 = \frac{a}{2} + \frac{1}{b} = \frac{ab + 2}{2b} \] **Hint:** When adding fractions, find a common denominator to combine them. ### Final Answer Thus, the value of \( \log_{3}10 \) in terms of \( a \) and \( b \) is: \[ \log_{3}10 = \frac{ab + 2}{2b} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|6 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

If log_(7)12=a ,log_(12)24=b , then find value of log_(54)168 in terms of a and b.

If log_(10)5=a and log_(10)3=b ,then

If log_(sqrt8) b = 3 1/3 , then find the value of b.

Given log_(10)2 = a and log_(10)3 = b . If 3^(x+2) = 45 , then the value of x in terms of a and b is-

If (log_(3)x)(log_(5)3)=3 , find x.

If log_(10) 2 = a, log_(10)3 = b" then "log_(0.72)(9.6) in terms of a and b is equal to

If log_(10)2 = a and log_(10) 3 = b , express each of the following in terms of 'a' and 'b' : (i) log 12 (ii) log 2.25 (iii) "log"_(2) (1)/(4) (iv) log 5.4 (v) log 60 (vi) "log 3" (1)/(8)

Let log_(10)2=a and log_(10)3=b determine the following in term of a and b log_(4)100+2log_(27)100

Given that N=7^(log_(49),900),A=2^(log_(2)4)+3^(log_(2)4)-4^(log_(2)2),D=(log_(5)49)(log_(7)125) Then answer the following questions : (Using the values of N, A, D) If log_(A)D=a, then the value of log_(6)12 is (in terms of a)

if log_10 5=a and log_10 3=b then:

ARIHANT MATHS ENGLISH-LOGARITHM AND THEIR PROPERTIES-Exercise (Subjective Type Questions)
  1. If log(7)12=a ,log(12)24=b, then find value of log(54)168 in terms of...

    Text Solution

    |

  2. If log(3)4=a,log(5)3=b, then find the value of log(3)10 in terms of a...

    Text Solution

    |

  3. If (Ina)/(b-c)=(Inb)/(c-a)=(Inc)/(a-b), prove the following . abc=1

    Text Solution

    |

  4. If (Ina)/(b-c)=(Inb)/(c-a)=(Inc)/(a-b), prove the following . a^a.b^b...

    Text Solution

    |

  5. If (lna)/(b-c)=(lnb)/(c-a)=(lnc)/(a-b), prove the following . a^(b^2+...

    Text Solution

    |

  6. If (Ina)/(b-c)=(Inb)/(c-a)=(Inc)/(a-b), prove the following . a+b+cge...

    Text Solution

    |

  7. If (Ina)/(b-c)=(Inb)/(c-a)=(Inc)/(a-b), prove the following . a^a+b^b...

    Text Solution

    |

  8. If (lna)/(b-c)=(lnb)/(c-a)=(lnc)/(a-b), prove the following . a^(b^2+...

    Text Solution

    |

  9. Prove that log(10) 2" lies between " 1/4 and 1/3.

    Text Solution

    |

  10. If log2=0.301 and log3=0.477, find the number of integers in 5^(200)

    Text Solution

    |

  11. If log2=0.301 and log3=0.477, find the number of integers in 6^(20)

    Text Solution

    |

  12. If log2=0.301 and log3=0.477, find the number of integers in the numb...

    Text Solution

    |

  13. If log2=0.301 and log3=0.477, find the value of log(3.375).

    Text Solution

    |

  14. Find the least value of log2x-logx(0.125)for xgt1 .

    Text Solution

    |

  15. Find values of lamda for which 1/log3lamda+1/log4lamdagt2 .

    Text Solution

    |

  16. Solve the following equations. (i) x^(1+log10x)=10x

    Text Solution

    |

  17. Solve the following equation. log2(9+2^x)=3

    Text Solution

    |

  18. Solve the following equations. (iii) 2.x^(log(4)3)+3^(log4x)=27

    Text Solution

    |

  19. Solve the following equations. (iv) log4log3log2x=0

    Text Solution

    |

  20. Solve the following equations.x^((log10x+5)/3)=10^(5+log10x)

    Text Solution

    |