Home
Class 12
MATHS
If (Ina)/(b-c)=(Inb)/(c-a)=(Inc)/(a-b), ...

If `(Ina)/(b-c)=(Inb)/(c-a)=(Inc)/(a-b)`, prove the following .
abc=1

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \( abc = 1 \) given that \[ \frac{\ln a}{b - c} = \frac{\ln b}{c - a} = \frac{\ln c}{a - b} = k, \] we can follow these steps: ### Step 1: Set up the equations From the given equality, we can express \( \ln a \), \( \ln b \), and \( \ln c \) in terms of \( k \): \[ \ln a = k(b - c), \] \[ \ln b = k(c - a), \] \[ \ln c = k(a - b). \] ### Step 2: Exponentiate the equations Next, we exponentiate each equation to express \( a \), \( b \), and \( c \): \[ a = e^{k(b - c)}, \] \[ b = e^{k(c - a)}, \] \[ c = e^{k(a - b)}. \] ### Step 3: Multiply the equations Now, we multiply \( a \), \( b \), and \( c \): \[ abc = e^{k(b - c)} \cdot e^{k(c - a)} \cdot e^{k(a - b)}. \] ### Step 4: Combine the exponents Since the bases are the same, we can combine the exponents: \[ abc = e^{k[(b - c) + (c - a) + (a - b)]}. \] ### Step 5: Simplify the exponent Now, simplify the exponent: \[ (b - c) + (c - a) + (a - b) = 0. \] Thus, we have: \[ abc = e^{k \cdot 0} = e^0 = 1. \] ### Conclusion Therefore, we conclude that: \[ abc = 1. \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|6 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

If (Ina)/(b-c)=(Inb)/(c-a)=(Inc)/(a-b) , prove the following . a+b+cge3

If (Ina)/(b-c)=(Inb)/(c-a)=(Inc)/(a-b) , prove the following . a^a.b^b.c^c=1

If (Ina)/(b-c)=(Inb)/(c-a)=(Inc)/(a-b) , prove the following . a^a+b^b+c^cge3

If (Ina)/((b-c)) =(Inb)/((c-a))=(Inc)/((a-b)) ,Prove that a^(b+c).b^(c+a).c^(a+b)=1

In any Delta ABC, prove the following : r_1=rcot(B/2)cot(C/2)

In a triangle Delta ABC , prove the following : (tan A//2)/((a-b)(a-c))+(tan B//2)/((b-c)(b-a))+(tan C//2)/((c-a)(c-b)) = (1)/(Delta)

In a triangle Delta ABC , prove the following : 2 abc cos.(A)/(2) cos.(B)/(2) cos.(C )/(2) = (a+b+c)Delta

If a^2,b^2,c^2 are in A.P., then prove that the following are also in A.P. Prove 1/(b+c),1/(c+a),1/(a+b)

If (b+c-a)/(a) , (c+a-b)/(b) , (a+b-c)/(c) are in A.P. then prove that (1)/(a),(1)/(b),(1)/(c) are also in A.P.

If (b+c-a)/a ,(b+c-a)/b ,(b+c-a)/c , are in A.P., prove that 1/a ,1/b ,1/c are also in A.P.

ARIHANT MATHS ENGLISH-LOGARITHM AND THEIR PROPERTIES-Exercise (Subjective Type Questions)
  1. If log(7)12=a ,log(12)24=b, then find value of log(54)168 in terms of...

    Text Solution

    |

  2. If log(3)4=a,log(5)3=b, then find the value of log(3)10 in terms of a...

    Text Solution

    |

  3. If (Ina)/(b-c)=(Inb)/(c-a)=(Inc)/(a-b), prove the following . abc=1

    Text Solution

    |

  4. If (Ina)/(b-c)=(Inb)/(c-a)=(Inc)/(a-b), prove the following . a^a.b^b...

    Text Solution

    |

  5. If (lna)/(b-c)=(lnb)/(c-a)=(lnc)/(a-b), prove the following . a^(b^2+...

    Text Solution

    |

  6. If (Ina)/(b-c)=(Inb)/(c-a)=(Inc)/(a-b), prove the following . a+b+cge...

    Text Solution

    |

  7. If (Ina)/(b-c)=(Inb)/(c-a)=(Inc)/(a-b), prove the following . a^a+b^b...

    Text Solution

    |

  8. If (lna)/(b-c)=(lnb)/(c-a)=(lnc)/(a-b), prove the following . a^(b^2+...

    Text Solution

    |

  9. Prove that log(10) 2" lies between " 1/4 and 1/3.

    Text Solution

    |

  10. If log2=0.301 and log3=0.477, find the number of integers in 5^(200)

    Text Solution

    |

  11. If log2=0.301 and log3=0.477, find the number of integers in 6^(20)

    Text Solution

    |

  12. If log2=0.301 and log3=0.477, find the number of integers in the numb...

    Text Solution

    |

  13. If log2=0.301 and log3=0.477, find the value of log(3.375).

    Text Solution

    |

  14. Find the least value of log2x-logx(0.125)for xgt1 .

    Text Solution

    |

  15. Find values of lamda for which 1/log3lamda+1/log4lamdagt2 .

    Text Solution

    |

  16. Solve the following equations. (i) x^(1+log10x)=10x

    Text Solution

    |

  17. Solve the following equation. log2(9+2^x)=3

    Text Solution

    |

  18. Solve the following equations. (iii) 2.x^(log(4)3)+3^(log4x)=27

    Text Solution

    |

  19. Solve the following equations. (iv) log4log3log2x=0

    Text Solution

    |

  20. Solve the following equations.x^((log10x+5)/3)=10^(5+log10x)

    Text Solution

    |