Home
Class 12
MATHS
If (lna)/(b-c)=(lnb)/(c-a)=(lnc)/(a-b), ...

If `(lna)/(b-c)=(lnb)/(c-a)=(lnc)/(a-b)`, prove the following .
`a^(b^2+bc+c^2).b^(c^2+ca+a^2).c^(a^2+ab+b^2)=1`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \( a^{(b^2 + bc + c^2)} \cdot b^{(c^2 + ca + a^2)} \cdot c^{(a^2 + ab + b^2)} = 1 \) given that \( \frac{\ln a}{b-c} = \frac{\ln b}{c-a} = \frac{\ln c}{a-b} \), we will follow these steps: ### Step 1: Set the common ratio Let us denote the common ratio as \( k \): \[ \frac{\ln a}{b-c} = \frac{\ln b}{c-a} = \frac{\ln c}{a-b} = k \] ### Step 2: Express \( \ln a \), \( \ln b \), and \( \ln c \) From the above equations, we can express \( \ln a \), \( \ln b \), and \( \ln c \) in terms of \( k \): \[ \ln a = k(b - c) \] \[ \ln b = k(c - a) \] \[ \ln c = k(a - b) \] ### Step 3: Substitute into the expression Now, we will substitute these expressions into the left-hand side of the equation we want to prove: \[ a^{(b^2 + bc + c^2)} = e^{k(b-c)(b^2 + bc + c^2)} \] \[ b^{(c^2 + ca + a^2)} = e^{k(c-a)(c^2 + ca + a^2)} \] \[ c^{(a^2 + ab + b^2)} = e^{k(a-b)(a^2 + ab + b^2)} \] ### Step 4: Multiply the expressions Now, we can multiply these three expressions: \[ a^{(b^2 + bc + c^2)} \cdot b^{(c^2 + ca + a^2)} \cdot c^{(a^2 + ab + b^2)} = e^{k[(b-c)(b^2 + bc + c^2) + (c-a)(c^2 + ca + a^2) + (a-b)(a^2 + ab + b^2)]} \] ### Step 5: Simplify the exponent Next, we need to simplify the exponent: \[ (b-c)(b^2 + bc + c^2) + (c-a)(c^2 + ca + a^2) + (a-b)(a^2 + ab + b^2) \] This expression can be shown to simplify to zero through algebraic manipulation, as the terms will cancel each other out. ### Step 6: Conclusion Since the exponent simplifies to zero, we have: \[ e^{0} = 1 \] Thus, we conclude that: \[ a^{(b^2 + bc + c^2)} \cdot b^{(c^2 + ca + a^2)} \cdot c^{(a^2 + ab + b^2)} = 1 \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|6 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

Prove that: |-a^2 ab ac ba -b^2 bc ac bc c^2| =4a^2b^2c^2 .

Evaluate the following: |[1,,a^2-bc],[1, b,b^2-ac],[1,c,c^2-ab]|

Without expanding show that |b^2c^2 bc b+cc^2a^2 ca c+a a^2b^2a b a+b|=0 .

Prove that =|1 1 1a b c b c+a^2a c+b^2a b+c^2|=2(a-b)(b-c)(c-a)

If a, b, c are in A.P., prove that: (i) 1/(bc) , 1/(ca), 1/(ab) are in A.P. (ii) (b+c)^2- a^2 ,(a+c)^2- b^2 , (b+a)^2- c^2 are in A.P.

If a, b, c are in A.P., prove that: (i) 1/(bc) , 1/(ca), 1/(ab) are in A.P. (ii) (b+c)^2- a^2 ,(a+c)^2- b^2 , (b+a)^2- c^2 are in A.P.

The roots of the equation a(b-2c)x^(2)+b(c-2a)x+c(a-2b)=0 are, when ab+bc+ca=0

The value of |(a,a^(2) - bc,1),(b,b^(2) - ca,1),(c,c^(2) - ab,1)| , is

Using properties of determinants, prove the following: |[a^2 + 1,ab, ac], [ab,b^2 + 1,b c],[ca, cb, c^2+1]|=1+a^2+b^2+c^2

Using properties of determinants, prove the following |(a^2+1,ab,ac),(ab,b^2+1,bc),(ca,cb,c^2+1)|=1+a^2+b^2+c^2 .

ARIHANT MATHS ENGLISH-LOGARITHM AND THEIR PROPERTIES-Exercise (Subjective Type Questions)
  1. If (Ina)/(b-c)=(Inb)/(c-a)=(Inc)/(a-b), prove the following . abc=1

    Text Solution

    |

  2. If (Ina)/(b-c)=(Inb)/(c-a)=(Inc)/(a-b), prove the following . a^a.b^b...

    Text Solution

    |

  3. If (lna)/(b-c)=(lnb)/(c-a)=(lnc)/(a-b), prove the following . a^(b^2+...

    Text Solution

    |

  4. If (Ina)/(b-c)=(Inb)/(c-a)=(Inc)/(a-b), prove the following . a+b+cge...

    Text Solution

    |

  5. If (Ina)/(b-c)=(Inb)/(c-a)=(Inc)/(a-b), prove the following . a^a+b^b...

    Text Solution

    |

  6. If (lna)/(b-c)=(lnb)/(c-a)=(lnc)/(a-b), prove the following . a^(b^2+...

    Text Solution

    |

  7. Prove that log(10) 2" lies between " 1/4 and 1/3.

    Text Solution

    |

  8. If log2=0.301 and log3=0.477, find the number of integers in 5^(200)

    Text Solution

    |

  9. If log2=0.301 and log3=0.477, find the number of integers in 6^(20)

    Text Solution

    |

  10. If log2=0.301 and log3=0.477, find the number of integers in the numb...

    Text Solution

    |

  11. If log2=0.301 and log3=0.477, find the value of log(3.375).

    Text Solution

    |

  12. Find the least value of log2x-logx(0.125)for xgt1 .

    Text Solution

    |

  13. Find values of lamda for which 1/log3lamda+1/log4lamdagt2 .

    Text Solution

    |

  14. Solve the following equations. (i) x^(1+log10x)=10x

    Text Solution

    |

  15. Solve the following equation. log2(9+2^x)=3

    Text Solution

    |

  16. Solve the following equations. (iii) 2.x^(log(4)3)+3^(log4x)=27

    Text Solution

    |

  17. Solve the following equations. (iv) log4log3log2x=0

    Text Solution

    |

  18. Solve the following equations.x^((log10x+5)/3)=10^(5+log10x)

    Text Solution

    |

  19. Solve the following equations. (vi) log3(log9x+1/2+9^x)=2x

    Text Solution

    |

  20. Solve the following equations. (vii) 4^(log10x+1)-6^(log10x)-2.3^(lo...

    Text Solution

    |