Home
Class 12
MATHS
If A=[(1,2),(2,1)] and f(x)=(1+x)/(1-x),...

If `A=[(1,2),(2,1)]` and `f(x)=(1+x)/(1-x)`, then f(A) is

A

`[[1 ,1],[1,1]]`

B

`[[2 ,2],[2,2]]`

C

`[[-1 ,-1],[-1,-1]]`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f(A) \) where \( A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \) and \( f(x) = \frac{1+x}{1-x} \), we can follow these steps: ### Step 1: Express \( f(A) \) We can express \( f(A) \) using the formula: \[ f(A) = I + A (I - A)^{-1} \] where \( I \) is the identity matrix. ### Step 2: Calculate \( I - A \) The identity matrix \( I \) for a 2x2 matrix is: \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] Now, calculate \( I - A \): \[ I - A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -2 \\ -2 & 0 \end{pmatrix} \] ### Step 3: Find the inverse of \( I - A \) To find the inverse of \( I - A \), we first calculate its determinant: \[ \text{det}(I - A) = (0)(0) - (-2)(-2) = 0 - 4 = -4 \] Now, the adjoint of \( I - A \) is: \[ \text{adj}(I - A) = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix} \] Thus, the inverse is given by: \[ (I - A)^{-1} = \frac{1}{\text{det}(I - A)} \cdot \text{adj}(I - A) = \frac{1}{-4} \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -\frac{1}{2} \\ -\frac{1}{2} & 0 \end{pmatrix} \] ### Step 4: Calculate \( A (I - A)^{-1} \) Now compute \( A (I - A)^{-1} \): \[ A (I - A)^{-1} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 0 & -\frac{1}{2} \\ -\frac{1}{2} & 0 \end{pmatrix} \] Calculating the product: \[ = \begin{pmatrix} 1 \cdot 0 + 2 \cdot -\frac{1}{2} & 1 \cdot -\frac{1}{2} + 2 \cdot 0 \\ 2 \cdot 0 + 1 \cdot -\frac{1}{2} & 2 \cdot -\frac{1}{2} + 1 \cdot 0 \end{pmatrix} = \begin{pmatrix} -1 & -\frac{1}{2} \\ -\frac{1}{2} & -1 \end{pmatrix} \] ### Step 5: Calculate \( f(A) \) Now, we can substitute back into the expression for \( f(A) \): \[ f(A) = I + A (I - A)^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} -1 & -\frac{1}{2} \\ -\frac{1}{2} & -1 \end{pmatrix} = \begin{pmatrix} 0 & -\frac{1}{2} \\ -\frac{1}{2} & 0 \end{pmatrix} \] ### Final Result Thus, the final result is: \[ f(A) = \begin{pmatrix} 0 & -\frac{1}{2} \\ -\frac{1}{2} & 0 \end{pmatrix} \]

To find \( f(A) \) where \( A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \) and \( f(x) = \frac{1+x}{1-x} \), we can follow these steps: ### Step 1: Express \( f(A) \) We can express \( f(A) \) using the formula: \[ f(A) = I + A (I - A)^{-1} \] where \( I \) is the identity matrix. ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|9 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|19 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|29 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x) = (x-1)/(x+1) , then f(2) is equal to

If f:R-{-(1)/(2)}toR-{(1)/(2)} is defined by f(x)=(x-3)/(2x+1) , then f^(-1)(x) is

If two roots of the equation (p-1)(x^2 +x +1)^2 -(p+1)(x^4+x^2+1)=0 are real and distinct and f(x)=(1-x)/(1+x) then f(f(x))+f(f(1/x)) is equal to

If f_1(x)=(1)/(x), f_(2) (x)=1-x, f_(3) (x)=1/(1-x) then find J(x) such that f_(2) o J o f_(1) (x)=f_(3) (x) (a) f_(1) (x) (b) (1)/(x) f_(3) (x) (c) f_(3) (x) (d) f_(2) (x)

If the function f:[1,∞)→[1,∞) is defined by f(x)=2 ^(x(x-1)) then f^-1(x) is

Let f : [-1, -1/2] rarr [-1, 1] is defined by f(x)=4x^(3)-3x , then f^(-1) (x) is

If 2f(x^2)+3f(1/x^2)=x^2-1 , then f(x^2) is

If f(x)=(x-1)/(x+1) , then f(f(a x)) in terms of f(x) is equal to (a)(f(x)-1)/(a(f(x)-1)) (b) (f(x)+1)/(a(f(x)-1)) (f(x)-1)/(a(f(x)+1)) (d) (f(x)+1)/(a(f(x)+1))

ARIHANT MATHS ENGLISH-MATRICES -Exercise (Questions Asked In Previous 13 Years Exam)
  1. If A=[(1,2),(2,1)] and f(x)=(1+x)/(1-x), then f(A) is

    Text Solution

    |

  2. Let A=[(1,0,0),(0,1,1),(0,-2,4)],I=[(1,0,0),(0,1,0),(0,0,1)] and A^-1=...

    Text Solution

    |

  3. about to only mathematics

    Text Solution

    |

  4. If A=[(1,0),(1,1)] and I=[(1,0),(0,1)] then which one of the following...

    Text Solution

    |

  5. If A^(2)-A+I=O, then A^(-1) is equal to

    Text Solution

    |

  6. Let {:A=[(1,0,0),(2,1,0),(3,2,1)]:}and U1,U2,U3 be column matrices sat...

    Text Solution

    |

  7. Let A = [(1,0,0), (2,1,0), (3,2,1)], and U1, U2 and U3 are columns of ...

    Text Solution

    |

  8. If A= ((1,0,0),(2,1,0),(3,2,1)), U(1), U(2), and U(3) are column matri...

    Text Solution

    |

  9. Let A=[{:(1,2),(3,4):}]and B = [{:(a,0),(0,b):}] where a, b are natura...

    Text Solution

    |

  10. If A and B are square matrices of size nxxn such that A^2-B^2 = (A-B)(...

    Text Solution

    |

  11. Let A= [[5,5alpha,alpha],[0,alpha,5alpha],[0,0,5]] . If |A^2|...

    Text Solution

    |

  12. Let A and B be 3xx3 matrtices of real numbers, where A is symmetric, "...

    Text Solution

    |

  13. Let A be a square matrix all of whose entries are integers. Then wh...

    Text Solution

    |

  14. Let A be a 2xx2 matrix with real entries. Let I be the 2xx2 identi...

    Text Solution

    |

  15. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  16. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  17. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  18. Let A be a 2xx2 matrix Statement -1 adj (adjA)=A Statement-2 abs(a...

    Text Solution

    |

  19. The number of 3xx3 matrices a whose entries are either 0 or 1 and for ...

    Text Solution

    |

  20. Let P be an odd prime number and T(p) be the following set of 2xx2 mat...

    Text Solution

    |

  21. Let P be an odd prime number and T(p) be the following set of 2xx2 mat...

    Text Solution

    |