Home
Class 12
MATHS
Elements of a matrix A of order 10xx10 a...

Elements of a matrix A of order `10xx10` are defined as `a_("ij")=omega^(i+j)` (where `omega` is imaginary cube root of unity), then trace (A) of the matrix is

A

0

B

1

C

3

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
D

tr `(A) = sum_(i=j=1)^(10) a_(ij) = sum _(i=j=1) ^(10) omega^(i+j) = sum_(i=1) ^(10) omega ^(2i) `
`= omega^(2)+omega^(4) + omega^(6) + omega^(8) + ... + omega^(20) `
`= (omega^(2)+omega + 1 )+( omega^(2) + omega+1)+(omega^(2)+omega+1) + omega^(20) `
`= 0 + 0 + 0+ omega ^(2) = omega^(2)`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|9 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|19 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|29 Videos

Similar Questions

Explore conceptually related problems

Elements of a matrix A of order 10 x 10 are defined as a_(ij)=omega^(i+j) (where omega is cube root unity), then tr(A) of matrix is

construst a matrix of order 2 xx 2 whose elements are defined as a_(ij)=i+3j.

If omega be an imaginary cube root of unity, show that (1+omega-omega^2)(1-omega+omega^2)=4

If omega be an imaginary cube root of unity, show that (1+omega-omega^2)(1-omega+omega^2)=4

If omega be an imaginary cube root of unity, show that 1+omega^n+omega^(2n)=0 , for n=2,4

If A=[{:(omega,0),(0,omega):}] , where omega is cube root of unity, then what is A^(100) equal to ?

sqrt(-1-sqrt(-1-sqrt(-1oo))) is equal to (where omega is the imaginary cube root of unity and i=sqrt(-1))

If x=omega-omega^2-2 then , the value of x^4+3x^3+2x^2-11x-6 is (where omega is a imaginary cube root of unity)

If x=omega-omega^2-2 then , the value of x^4+3x^3+2x^2-11x-6 is (where omega is a imaginary cube root of unity)

If omega be an imaginary cube root of unity, show that: 1/(1+2omega)+ 1/(2+omega) - 1/(1+omega)=0 .

ARIHANT MATHS ENGLISH-MATRICES -Exercise (Questions Asked In Previous 13 Years Exam)
  1. Elements of a matrix A of order 10xx10 are defined as a("ij")=omega^(i...

    Text Solution

    |

  2. Let A=[(1,0,0),(0,1,1),(0,-2,4)],I=[(1,0,0),(0,1,0),(0,0,1)] and A^-1=...

    Text Solution

    |

  3. about to only mathematics

    Text Solution

    |

  4. If A=[(1,0),(1,1)] and I=[(1,0),(0,1)] then which one of the following...

    Text Solution

    |

  5. If A^(2)-A+I=O, then A^(-1) is equal to

    Text Solution

    |

  6. Let {:A=[(1,0,0),(2,1,0),(3,2,1)]:}and U1,U2,U3 be column matrices sat...

    Text Solution

    |

  7. Let A = [(1,0,0), (2,1,0), (3,2,1)], and U1, U2 and U3 are columns of ...

    Text Solution

    |

  8. If A= ((1,0,0),(2,1,0),(3,2,1)), U(1), U(2), and U(3) are column matri...

    Text Solution

    |

  9. Let A=[{:(1,2),(3,4):}]and B = [{:(a,0),(0,b):}] where a, b are natura...

    Text Solution

    |

  10. If A and B are square matrices of size nxxn such that A^2-B^2 = (A-B)(...

    Text Solution

    |

  11. Let A= [[5,5alpha,alpha],[0,alpha,5alpha],[0,0,5]] . If |A^2|...

    Text Solution

    |

  12. Let A and B be 3xx3 matrtices of real numbers, where A is symmetric, "...

    Text Solution

    |

  13. Let A be a square matrix all of whose entries are integers. Then wh...

    Text Solution

    |

  14. Let A be a 2xx2 matrix with real entries. Let I be the 2xx2 identi...

    Text Solution

    |

  15. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  16. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  17. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  18. Let A be a 2xx2 matrix Statement -1 adj (adjA)=A Statement-2 abs(a...

    Text Solution

    |

  19. The number of 3xx3 matrices a whose entries are either 0 or 1 and for ...

    Text Solution

    |

  20. Let P be an odd prime number and T(p) be the following set of 2xx2 mat...

    Text Solution

    |

  21. Let P be an odd prime number and T(p) be the following set of 2xx2 mat...

    Text Solution

    |