Home
Class 12
MATHS
Let A = [[1,0,0],[1,0,1], [0,1,0]] " sat...

Let `A = [[1,0,0],[1,0,1], [0,1,0]] " satisfies " A^(n) = A^(n-2) + A^(2 ) -I` for `nge 3` and
consider matrix `underset(3xx3)(U)` with its columns as `U_(1), U_(2), U_(3),` such that
` A^(50)U_(1)=[[1],[25],[25]],A^(50) U_(2)=[[0],[1],[0]]and A^(50) U_(3)[[0],[0],[1]]`
The value of `abs(A^(50))` equals

A

(a)`-1`

B

(b)0

C

(c)1

D

(d)25

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the determinant of the matrix \( A^{50} \) given the recurrence relation and the matrix \( A \). ### Step 1: Define the Matrix A The matrix \( A \) is given as: \[ A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \] ### Step 2: Understand the Recurrence Relation The recurrence relation provided is: \[ A^n = A^{n-2} + A^2 - I \quad \text{for } n \geq 3 \] where \( I \) is the identity matrix. ### Step 3: Calculate \( A^2 \) First, we need to calculate \( A^2 \): \[ A^2 = A \cdot A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \] Calculating this gives: \[ A^2 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \] So, \( A^2 = A \). ### Step 4: Use the Recurrence Relation Using the recurrence relation: \[ A^n = A^{n-2} + A^2 - I \] Since \( A^2 = A \), we can rewrite it as: \[ A^n = A^{n-2} + A - I \] ### Step 5: Calculate Higher Powers We can now compute \( A^3 \): \[ A^3 = A^1 + A - I = A + A - I = 2A - I \] Continuing this process, we can find: \[ A^4 = A^2 + A^2 - I = 2A - I \] The pattern suggests that: \[ A^n = (n-1)A - (n-2)I \] ### Step 6: Calculate \( A^{50} \) Using the derived formula: \[ A^{50} = 49A - 48I \] ### Step 7: Substitute \( A \) and \( I \) Substituting \( A \) and \( I \): \[ A^{50} = 49 \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} - 48 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \] Calculating this gives: \[ A^{50} = \begin{bmatrix} 49 & 0 & 0 \\ 49 & 0 & 49 \\ 0 & 49 & 0 \end{bmatrix} - \begin{bmatrix} 48 & 0 & 0 \\ 0 & 48 & 0 \\ 0 & 0 & 48 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 49 & -48 & 49 \\ 0 & 49 & -48 \end{bmatrix} \] ### Step 8: Calculate the Determinant Now, we need to calculate the determinant of \( A^{50} \): \[ \text{det}(A^{50}) = \text{det}\begin{bmatrix} 1 & 0 & 0 \\ 49 & -48 & 49 \\ 0 & 49 & -48 \end{bmatrix} \] Using the determinant formula for a \( 3 \times 3 \) matrix: \[ \text{det}(A^{50}) = 1 \cdot \text{det}\begin{bmatrix} -48 & 49 \\ 49 & -48 \end{bmatrix} = 1 \cdot (-48 \cdot -48 - 49 \cdot 49) = 2304 - 2401 = -97 \] ### Final Answer Thus, the absolute value of the determinant is: \[ \text{abs}(A^{50}) = 97 \]

To solve the problem, we need to find the determinant of the matrix \( A^{50} \) given the recurrence relation and the matrix \( A \). ### Step 1: Define the Matrix A The matrix \( A \) is given as: \[ A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|9 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|19 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|29 Videos

Similar Questions

Explore conceptually related problems

Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-2)+A^(2)-I for n ge 3 . And trace of a square matrix X is equal to the sum of elements in its proncipal diagonal. Further consider a matrix underset(3xx3)(uu) with its column as uu_(1), uu_(2), uu_(3) such that A^(50) uu_(1)=[(1),(25),(25)], A^(50) uu_(2)=[(0),(1),(0)], A^(50) uu_(3)=[(0),(0),(1)] Then answer the following question : Trace of A^(50) equals

Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-2)+A^(2)-I for n ge 3 . And trace of a square matrix X is equal to the sum of elements in its proncipal diagonal. Further consider a matrix underset(3xx3)(uu) with its column as uu_(1), uu_(2), uu_(3) such that A^(50) uu_(1)=[(1),(25),(25)], A^(50) uu_(2)=[(0),(1),(0)], A^(50) uu_(3)=[(0),(0),(1)] Then answer the following question : The value of |uu| equals

Let matrix A = [[1,0,0],[25,1,0],[25,0,1]] and a matrix B of third order with its columns as B_1 , B_2 , B_3 be such that AB_1 = [[1],[25],[25]] , AB_2 = [[0],[1],[0]] , and AB_3 = [[0],[0],[1]] . Find det(adj B) .

If A=[[2,1,3],[4,1,0]] and B=[[1,-1],[0,2],[5,0]] find AB and BA.

If A=[[2,1,3],[4,1,0]], B=[[1,-1],[0,2],[5,0]] , verify that (AB)\'=B\'A\'

Let A = [(1,0,0), (2,1,0), (3,2,1)], and U_1, U_2 and U_3 are columns of a 3 xx 3 matrix U . If column matrices U_1, U_2 and U_3 satisfy AU_1 = [(1),(0),(0)], AU_2 = [(2),(3),(0)], AU_3 = [(2),(3),(1)] then the sum of the elements of the matrix U^(-1) is

If A=[(1,0),(1/2,1)] then A^50 is (A) [(1,25),(0,1)] (B) [(1,0),(25,1)] (C) [(1,0),(0,50)] (D) [(1,0),(50,1)]

Let a be a 3xx3 matric such that [(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),(1,0,0),(0,1,0)] , then find A^(-1) .

Consider a matrix A=[(0,1,2),(0,-3,0),(1,1,1)]. If 6A^(-1)=aA^(2)+bA+cI , where a, b, c in and I is an identity matrix, then a+2b+3c is equal to

Let {:A=[(1,0,0),(2,1,0),(3,2,1)]:}and U_1,U_2,U_3 be column matrices satisfying {:AU_1=[(1),(0),(0)],AU_2=[(2),(3),(6)],AU_3=[(2),(3),(1)]:} .If U is 3xx3 matrix whose columns are U_1,U_2,U_3," then "absU=

ARIHANT MATHS ENGLISH-MATRICES -Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let A = [[1,0,0],[1,0,1], [0,1,0]] " satisfies " A^(n) = A^(n-2) + A^(...

    Text Solution

    |

  2. Let A=[(1,0,0),(0,1,1),(0,-2,4)],I=[(1,0,0),(0,1,0),(0,0,1)] and A^-1=...

    Text Solution

    |

  3. about to only mathematics

    Text Solution

    |

  4. If A=[(1,0),(1,1)] and I=[(1,0),(0,1)] then which one of the following...

    Text Solution

    |

  5. If A^(2)-A+I=O, then A^(-1) is equal to

    Text Solution

    |

  6. Let {:A=[(1,0,0),(2,1,0),(3,2,1)]:}and U1,U2,U3 be column matrices sat...

    Text Solution

    |

  7. Let A = [(1,0,0), (2,1,0), (3,2,1)], and U1, U2 and U3 are columns of ...

    Text Solution

    |

  8. If A= ((1,0,0),(2,1,0),(3,2,1)), U(1), U(2), and U(3) are column matri...

    Text Solution

    |

  9. Let A=[{:(1,2),(3,4):}]and B = [{:(a,0),(0,b):}] where a, b are natura...

    Text Solution

    |

  10. If A and B are square matrices of size nxxn such that A^2-B^2 = (A-B)(...

    Text Solution

    |

  11. Let A= [[5,5alpha,alpha],[0,alpha,5alpha],[0,0,5]] . If |A^2|...

    Text Solution

    |

  12. Let A and B be 3xx3 matrtices of real numbers, where A is symmetric, "...

    Text Solution

    |

  13. Let A be a square matrix all of whose entries are integers. Then wh...

    Text Solution

    |

  14. Let A be a 2xx2 matrix with real entries. Let I be the 2xx2 identi...

    Text Solution

    |

  15. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  16. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  17. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  18. Let A be a 2xx2 matrix Statement -1 adj (adjA)=A Statement-2 abs(a...

    Text Solution

    |

  19. The number of 3xx3 matrices a whose entries are either 0 or 1 and for ...

    Text Solution

    |

  20. Let P be an odd prime number and T(p) be the following set of 2xx2 mat...

    Text Solution

    |

  21. Let P be an odd prime number and T(p) be the following set of 2xx2 mat...

    Text Solution

    |