Home
Class 12
MATHS
If B and C are non-singular matrices and...

If `B and C` are non-singular matrices and `O` is null matrix, then show that `[[A, B],[ C ,O]]^(-1)=[[O, C^(-1)],[B^(-1),-B^-1A C^(-1)]]dot`

Text Solution

Verified by Experts

We have, First part `[[A,O],[B,C]][[A^(-1),O],[-C^(-1)BA^(-1),C^(-1)]]`
`=[[A A^(-1),O],[BA^(-1)-C C ^(-1)BA^(-1),C C^(-1)]]`
`=[[I,O],[BA^(-1)-BA^(-1),I]]=[[I,O],[0,I]]`
Hence, `[[A^(-1),O],[-C^(-1)BA^(-1),C^(-1)]]` is the inverse of `[[A,O],[B,C]] `
Second part `[[1,0,0,0],[1,1,0,0],[1,1,1,0],[1,1,1,1]] = [[A,O],[B,C]]`
where `A = [[1,0],[1,1]], B=[[1,1],[1,1]],C=[[1,0],[1,1]]and O = [[0,0],[0,0]]`
and `A^(-) = [[1,0],[-1,1]],C^(-1)=[[1,0],[-1,1]]`
Now, `C^(-1)BA^(-1) = [[1,0],[-1,1]][[1,1],[1,1]][[1,0],[-1,1]] = [[0,0],[0,0]]`
`therefore` Inverse of `[[1,0,0,0],[1,1,0,0],[1,1,1,0],[1,1,1,1]] "is" [[1,0,0,0],[-1,1,0,0],[0,1,1,0],[0,0,-1,1]]`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|9 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|19 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|29 Videos

Similar Questions

Explore conceptually related problems

If A,B,C are non - singular matrices of same order then (AB^(-1)C)^(-1)=

If A and B are non-singular symmetric matrices such that AB=BA , then prove that A^(-1) B^(-1) is symmetric matrix.

If the matrices, A, B and (A+B) are non-singular, then prove that [A(A+B)^(-1) B]^(-1) =B^(-1)+A^(-1) .

If B is a non-singular matrix and A is a square matrix, then det (B^(-1) AB) is equal to (A) det (A^(-1)) (B) det (B^(-1)) (C) det (A) (D) det (B)

If B is a non-singular matrix and A is a square matrix, then det (B^(-1) AB) is equal to (A) det (A^(-1)) (B) det (B^(-1)) (C) det (A) (D) det (B)

If the matrices, A ,B ,(A+B) are non-singular, then prove that [A(A+B)^(-1)B]^(-1)=B^(-1)+A^(-1) .

If Aa n dB are two non-singular matrices of the same order such that B^r=I , for some positive integer r >1,t h e nA^(-1)B^(r-1)A=A^(-1)B^(-1)A= I b. 2I c. O d. -I

If B ,\ C are n rowed square matrices and if A=B+C , B C=C B , C^2=O , then show that for every n in N , A^(n+1)=B^n(B+(n+1)C) .

If A a n d B are two non-singular matrices of the same order such that B^r=I , for some positive integer r >1,t h e n (A^(-1)B^(r-1)A)-(A^(-1)B^(-1)A)= a. I b. 2I c. O d. -I

For non-singular square matrix A ,\ B\ a n d\ C of the same order then, (A B^(-1)C)^(-1)= (a) A^(-1)B C^(-1) (b) C^(-1)B^(-1)A^(-1) (c) C B A^(-1) (d) C^(-1)\ B\ A^(-1)

ARIHANT MATHS ENGLISH-MATRICES -Exercise (Questions Asked In Previous 13 Years Exam)
  1. If B and C are non-singular matrices and O is null matrix, then show t...

    Text Solution

    |

  2. Let A=[(1,0,0),(0,1,1),(0,-2,4)],I=[(1,0,0),(0,1,0),(0,0,1)] and A^-1=...

    Text Solution

    |

  3. about to only mathematics

    Text Solution

    |

  4. If A=[(1,0),(1,1)] and I=[(1,0),(0,1)] then which one of the following...

    Text Solution

    |

  5. If A^(2)-A+I=O, then A^(-1) is equal to

    Text Solution

    |

  6. Let {:A=[(1,0,0),(2,1,0),(3,2,1)]:}and U1,U2,U3 be column matrices sat...

    Text Solution

    |

  7. Let A = [(1,0,0), (2,1,0), (3,2,1)], and U1, U2 and U3 are columns of ...

    Text Solution

    |

  8. If A= ((1,0,0),(2,1,0),(3,2,1)), U(1), U(2), and U(3) are column matri...

    Text Solution

    |

  9. Let A=[{:(1,2),(3,4):}]and B = [{:(a,0),(0,b):}] where a, b are natura...

    Text Solution

    |

  10. If A and B are square matrices of size nxxn such that A^2-B^2 = (A-B)(...

    Text Solution

    |

  11. Let A= [[5,5alpha,alpha],[0,alpha,5alpha],[0,0,5]] . If |A^2|...

    Text Solution

    |

  12. Let A and B be 3xx3 matrtices of real numbers, where A is symmetric, "...

    Text Solution

    |

  13. Let A be a square matrix all of whose entries are integers. Then wh...

    Text Solution

    |

  14. Let A be a 2xx2 matrix with real entries. Let I be the 2xx2 identi...

    Text Solution

    |

  15. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  16. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  17. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  18. Let A be a 2xx2 matrix Statement -1 adj (adjA)=A Statement-2 abs(a...

    Text Solution

    |

  19. The number of 3xx3 matrices a whose entries are either 0 or 1 and for ...

    Text Solution

    |

  20. Let P be an odd prime number and T(p) be the following set of 2xx2 mat...

    Text Solution

    |

  21. Let P be an odd prime number and T(p) be the following set of 2xx2 mat...

    Text Solution

    |