Home
Class 12
MATHS
If the matrix A is such that A[{:(-1,2),...

If the matrix A is such that `A[{:(-1,2),(3,1):}]=[{:(-4,1),(7,7):}]`,then A is equal to

A

(a) `[{:(1,1),(2,-3):}]`

B

(b) `[{:(1,1),(-2,3):}]`

C

(c) `[{:(1,-1),(2,3):}]`

D

(d) `[{:(-1,1),(2,3):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the matrix \( A \) such that: \[ A \begin{pmatrix} -1 & 2 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} -4 & 1 \\ 7 & 7 \end{pmatrix} \] Let's denote the matrix \( A \) as: \[ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \] Now, we will perform the matrix multiplication: \[ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} -1 & 2 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} a(-1) + b(3) & a(2) + b(1) \\ c(-1) + d(3) & c(2) + d(1) \end{pmatrix} \] This gives us: \[ \begin{pmatrix} -a + 3b & 2a + b \\ -c + 3d & 2c + d \end{pmatrix} = \begin{pmatrix} -4 & 1 \\ 7 & 7 \end{pmatrix} \] From this, we can set up the following equations by equating the corresponding entries: 1. \( -a + 3b = -4 \) (Equation 1) 2. \( 2a + b = 1 \) (Equation 2) 3. \( -c + 3d = 7 \) (Equation 3) 4. \( 2c + d = 7 \) (Equation 4) ### Step 1: Solve for \( a \) and \( b \) From Equation 1: \[ -a + 3b = -4 \implies a = 3b + 4 \] Now substitute \( a \) in Equation 2: \[ 2(3b + 4) + b = 1 \] \[ 6b + 8 + b = 1 \] \[ 7b + 8 = 1 \implies 7b = 1 - 8 \implies 7b = -7 \implies b = -1 \] Now substitute \( b = -1 \) back into the expression for \( a \): \[ a = 3(-1) + 4 = -3 + 4 = 1 \] ### Step 2: Solve for \( c \) and \( d \) From Equation 3: \[ -c + 3d = 7 \implies c = 3d - 7 \] Now substitute \( c \) in Equation 4: \[ 2(3d - 7) + d = 7 \] \[ 6d - 14 + d = 7 \] \[ 7d - 14 = 7 \implies 7d = 7 + 14 \implies 7d = 21 \implies d = 3 \] Now substitute \( d = 3 \) back into the expression for \( c \): \[ c = 3(3) - 7 = 9 - 7 = 2 \] ### Final Matrix Now we have all the values: \[ a = 1, \quad b = -1, \quad c = 2, \quad d = 3 \] Thus, the matrix \( A \) is: \[ A = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix} \] ### Conclusion The final answer is: \[ A = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|9 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|19 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|29 Videos

Similar Questions

Explore conceptually related problems

if [{:(3,2),(7,5):}]A{:[(-1,1),(-2,1):}]={:[(2,-1),(0,4):}] then trace of A is equal to

1/7+4/14 is equal to

Find the matrix X for which [(1,-4) ,(3,-2)]X=[(-16,-6),( 7, 2)] .

The product of a 9xx4 matrix and a 4xx9 matrix contains a variable x in exactly two places. If D(x) is the determinant of the matrix product such that D(0)=1, D(-1)=1 and D(2)=7, then D(-2) is equal to

{:[(7,1,2),(9,2,1)]:}{:[(3),(4),(5)]:}+2{:[(4),(2)]:} is equal to

Find the matrix A such that : [(1 ,0 ),(0 ,1)]A=[(3 ,3 ,5 ),(1, 0 ,1)] (ii) A[(1, 2, 3 ),(4, 5 ,6)]=[(-7,-8,-9 ),(2, 4 ,6)]

[{:(1,3),(2,7):}] find the inverse of matrix

If the adjoint of a 3 xx 3 matrix P is [{:(,1,4,4),(,2,1,7),(,1,1,3):}] , then the possible value(s) of the determinant of P is (are)