Home
Class 12
MATHS
If A=[{:(cosx,sinx),(-sinx,cosx)] then ...

If `A=[{:(cosx,sinx),(-sinx,cosx)]` then find |A|

Text Solution

AI Generated Solution

The correct Answer is:
To find the determinant of the matrix \( A \) given by \[ A = \begin{pmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{pmatrix} \] we will follow these steps: ### Step 1: Write the formula for the determinant of a 2x2 matrix The determinant of a 2x2 matrix \[ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \] is calculated using the formula: \[ |A| = ad - bc \] ### Step 2: Identify the elements of matrix \( A \) In our case, we have: - \( a = \cos x \) - \( b = \sin x \) - \( c = -\sin x \) - \( d = \cos x \) ### Step 3: Substitute the elements into the determinant formula Now, we can substitute these values into the determinant formula: \[ |A| = (\cos x)(\cos x) - (\sin x)(-\sin x) \] ### Step 4: Simplify the expression This simplifies to: \[ |A| = \cos^2 x + \sin^2 x \] ### Step 5: Use the Pythagorean identity Using the Pythagorean identity, we know that: \[ \cos^2 x + \sin^2 x = 1 \] ### Final Result Thus, we find that: \[ |A| = 1 \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|9 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|19 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|29 Videos

Similar Questions

Explore conceptually related problems

A=|{:(cosx,-sinx),(sinx,cosx):}| , then show that (A^(-1))^(-1)=A.

If A=[[cosx,sinx],[-sinx,cosx]] , when A + A^T= I find x satisfying 0 < x < pi/2

If A=[[cosx,-sinx],[sinx,cosx]] , find A A^T

Expand | (cosx, -sinx),(sinx , cosx)|

The number of distinct real roots of the equation |{:(cosx, sinx, sinx), (sinx, cosx, sinx), (sinx, sinx, cosx):}|=0 in the interval [-\ pi/4,pi/4] is- a. 3 b. \ 4 c. \ 2 d. 1

Find the inverse matrix of the matrix A=|{:(cosx,-sinx,0),(sinx,cosx,0),(0,0,1):}|

If f(x) =|{:(sinx,cosx,sinx),(cosx,-sinx,cosx),(x,1,1):}| find the value of 2[f'(0)]+[f'(1)]^(2)

If y=(sinx)/(x+cosx) , then find (dy)/(dx) .

cosx{(cosx)/(1-sinx)+(1-sinx)/(cosx)}, is

If y=(sinx+cosx)/(sinx-cosx) , then (dy)/(dx)" at "x=0 is