Home
Class 12
MATHS
The element in the first row and third c...

The element in the first row and third column of the inverse of the matrix `[(1,2,-3),(0,1,2),(0,0,1)]` is

A

`-2`

B

0

C

1

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the element in the first row and third column of the inverse of the matrix \[ A = \begin{pmatrix} 1 & 2 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}, \] we will follow these steps: ### Step 1: Calculate the Determinant of Matrix A The determinant of a 3x3 matrix \[ \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \] is calculated using the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg). \] For our matrix \( A \): \[ \text{det}(A) = 1 \cdot (1 \cdot 1 - 2 \cdot 0) - 2 \cdot (0 \cdot 1 - 2 \cdot 0) + (-3) \cdot (0 \cdot 0 - 1 \cdot 0). \] Calculating this gives: \[ = 1 \cdot (1 - 0) - 2 \cdot (0 - 0) + (-3) \cdot (0 - 0) = 1 - 0 + 0 = 1. \] ### Step 2: Calculate the Adjoint of Matrix A The adjoint of a matrix is found by calculating the cofactor matrix and then transposing it. 1. **Cofactor Calculation**: - For element \( a_{11} = 1 \): Minor is \( \begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix} = 1 \) → Cofactor = \( 1 \). - For element \( a_{12} = 2 \): Minor is \( \begin{vmatrix} 0 & 2 \\ 0 & 1 \end{vmatrix} = 0 \) → Cofactor = \( -0 = 0 \). - For element \( a_{13} = -3 \): Minor is \( \begin{vmatrix} 0 & 1 \\ 0 & 0 \end{vmatrix} = 0 \) → Cofactor = \( 0 \). - For element \( a_{21} = 0 \): Minor is \( \begin{vmatrix} 2 & -3 \\ 0 & 1 \end{vmatrix} = 2 \) → Cofactor = \( -2 \). - For element \( a_{22} = 1 \): Minor is \( \begin{vmatrix} 1 & -3 \\ 0 & 1 \end{vmatrix} = 1 \) → Cofactor = \( 1 \). - For element \( a_{23} = 2 \): Minor is \( \begin{vmatrix} 1 & 2 \\ 0 & 0 \end{vmatrix} = 0 \) → Cofactor = \( 0 \). - For element \( a_{31} = 0 \): Minor is \( \begin{vmatrix} 2 & -3 \\ 1 & 2 \end{vmatrix} = 4 \) → Cofactor = \( 4 \). - For element \( a_{32} = 0 \): Minor is \( \begin{vmatrix} 1 & -3 \\ 0 & 2 \end{vmatrix} = 2 \) → Cofactor = \( -2 \). - For element \( a_{33} = 1 \): Minor is \( \begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix} = 1 \) → Cofactor = \( 1 \). 2. **Cofactor Matrix**: \[ C = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 4 & -2 & 1 \end{pmatrix}. \] 3. **Transpose the Cofactor Matrix** to get the adjoint: \[ \text{adj}(A) = C^T = \begin{pmatrix} 1 & -2 & 4 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}. \] ### Step 3: Calculate the Inverse of Matrix A Using the formula for the inverse: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A). \] Since \( \text{det}(A) = 1 \): \[ A^{-1} = 1 \cdot \begin{pmatrix} 1 & -2 & 4 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -2 & 4 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}. \] ### Step 4: Find the Element in the First Row and Third Column From the inverse matrix \( A^{-1} \): \[ A^{-1} = \begin{pmatrix} 1 & -2 & 4 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}. \] The element in the first row and third column is \( 4 \). ### Final Answer The element in the first row and third column of the inverse of the matrix is **4**. ---
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|9 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|19 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|29 Videos

Similar Questions

Explore conceptually related problems

The matrix [{:(1,0,0),(0,2,0),(0,0,4):}] is a

Compute the inverse of the matix A = [{:(0,1,2),(1,2,3),(0,1,2):}]

Using elementry transformation, find the inverse of the matrix. [{:(,0,1,2),(,1,2,3),(,3,1,1,):}]

Using elementary transformations, find the inverse of the matrix : [(2,0,-1),(5, 1, 0),(0, 1, 3)]

Using elementary transformations, find the inverse of the matrix [[1, 3,-2],[-3, 0,-1],[ 2, 1, 0]]

Using elementary transformation find the inverse of the matrix : A=((1, -3,2),(3, 0, 1),(-2, -1, 0))

Using elementary transformations, find the inverse of the matrices A=[(2,0,-1),(5,1,0),(0,1,3)]A^-1=?

Using elementary transformations, find the inverse of the matrix [[1, 3,-2],[-3, 0,-5],[ 2, 5, 0]]

Using elementary transformations, find the inverse of the matrix. ({:(0,0,-1),(3,4,5),(-2,-4,-7):})

Let A be an mxxn matrix. If there exists a matrix L of type nxxm such that LA=I_(n) , then L is called left inverse of A. Similarly, if there exists a matrix R of type nxxm such that AR=I_(m) , then R is called right inverse of A. For example, to find right inverse of matrix A=[(1,-1),(1,1),(2,3)] , we take R=[(x,y,x),(u,v,w)] and solve AR=I_(3) , i.e., [(1,-1),(1,1),(2,3)][(x,y,z),(u,v,w)]=[(1,0,0),(0,1,0),(0,0,1)] {:(implies,x-u=1,y-v=0,z-w=0),(,x+u=0,y+v=1,z+w=0),(,2x+3u=0,2y+3v=0,2z+3w=1):} As this system of equations is inconsistent, we say there is no right inverse for matrix A. The number of right inverses for the matrix [(1,-1,2),(2,-1,1)] is