Home
Class 12
MATHS
If {:A=[(0,1,-1),(2,1,3),(3,2,1)]:} then...

If `{:A=[(0,1,-1),(2,1,3),(3,2,1)]:}` then `(A(adj A)A^(-1))A=`

A

`[{:(-6,0,0),(0,-6,0),(0,0,-6):}]`

B

`[{:(0,(1)/(6),-(1)/(6)),((1)/(3),(1)/(6),(1)/(2)),((1)/(2),(1)/(3),(1)/(6)):}]`

C

`[{:(3,0,0),(0,3,0),(0,0,3):}]`

D

`[{:(1,0,0),(0,1,0),(0,0,1):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compute the expression \( (A \cdot \text{adj}(A) \cdot A^{-1}) \cdot A \) where \( A \) is the given matrix: \[ A = \begin{pmatrix} 0 & 1 & -1 \\ 2 & 1 & 3 \\ 3 & 2 & 1 \end{pmatrix} \] ### Step 1: Calculate the Determinant of \( A \) First, we need to find the determinant of matrix \( A \). \[ \text{det}(A) = 0 \cdot \begin{vmatrix} 1 & 3 \\ 2 & 1 \end{vmatrix} - 1 \cdot \begin{vmatrix} 2 & 3 \\ 3 & 1 \end{vmatrix} - (-1) \cdot \begin{vmatrix} 2 & 1 \\ 3 & 2 \end{vmatrix} \] Calculating the minors: 1. \( \begin{vmatrix} 1 & 3 \\ 2 & 1 \end{vmatrix} = (1 \cdot 1) - (3 \cdot 2) = 1 - 6 = -5 \) 2. \( \begin{vmatrix} 2 & 3 \\ 3 & 1 \end{vmatrix} = (2 \cdot 1) - (3 \cdot 3) = 2 - 9 = -7 \) 3. \( \begin{vmatrix} 2 & 1 \\ 3 & 2 \end{vmatrix} = (2 \cdot 2) - (1 \cdot 3) = 4 - 3 = 1 \) Now substituting back into the determinant formula: \[ \text{det}(A) = 0 \cdot (-5) - 1 \cdot (-7) + 1 \cdot (1) = 0 + 7 + 1 = 8 \] ### Step 2: Calculate the Adjoint of \( A \) The adjoint of \( A \), denoted as \( \text{adj}(A) \), is the transpose of the cofactor matrix. We need to find the cofactors of each element in \( A \). Calculating the cofactors: 1. \( C_{11} = \begin{vmatrix} 1 & 3 \\ 2 & 1 \end{vmatrix} = -5 \) 2. \( C_{12} = -\begin{vmatrix} 2 & 3 \\ 3 & 1 \end{vmatrix} = 7 \) 3. \( C_{13} = \begin{vmatrix} 2 & 1 \\ 3 & 2 \end{vmatrix} = 1 \) 4. \( C_{21} = -\begin{vmatrix} 1 & -1 \\ 2 & 1 \end{vmatrix} = 1 \) 5. \( C_{22} = \begin{vmatrix} 0 & -1 \\ 3 & 1 \end{vmatrix} = 3 \) 6. \( C_{23} = -\begin{vmatrix} 0 & 1 \\ 3 & 2 \end{vmatrix} = -3 \) 7. \( C_{31} = \begin{vmatrix} 1 & -1 \\ 1 & 3 \end{vmatrix} = 4 \) 8. \( C_{32} = -\begin{vmatrix} 0 & -1 \\ 2 & 3 \end{vmatrix} = 2 \) 9. \( C_{33} = \begin{vmatrix} 0 & 1 \\ 2 & 1 \end{vmatrix} = -2 \) Now, the cofactor matrix is: \[ \text{Cof}(A) = \begin{pmatrix} -5 & 7 & 1 \\ 1 & 3 & -3 \\ 4 & 2 & -2 \end{pmatrix} \] Taking the transpose gives us the adjoint: \[ \text{adj}(A) = \begin{pmatrix} -5 & 1 & 4 \\ 7 & 3 & 2 \\ 1 & -3 & -2 \end{pmatrix} \] ### Step 3: Calculate the Inverse of \( A \) The inverse of \( A \) can be calculated using the formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the determinant and adjoint: \[ A^{-1} = \frac{1}{8} \begin{pmatrix} -5 & 1 & 4 \\ 7 & 3 & 2 \\ 1 & -3 & -2 \end{pmatrix} \] ### Step 4: Calculate \( A \cdot \text{adj}(A) \cdot A^{-1} \) Now we compute \( A \cdot \text{adj}(A) \): \[ A \cdot \text{adj}(A) = A \cdot \begin{pmatrix} -5 & 1 & 4 \\ 7 & 3 & 2 \\ 1 & -3 & -2 \end{pmatrix} \] Calculating this product will give us a matrix that we can then multiply by \( A^{-1} \). ### Step 5: Final Calculation Finally, we multiply the result from the previous step by \( A \) to get the final result. \[ (A \cdot \text{adj}(A) \cdot A^{-1}) \cdot A = \text{det}(A) \cdot I \cdot A = 8 \cdot A \] Thus, the final result is: \[ 8A = 8 \begin{pmatrix} 0 & 1 & -1 \\ 2 & 1 & 3 \\ 3 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 8 & -8 \\ 16 & 8 & 24 \\ 24 & 16 & 8 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|9 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|19 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|29 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(,1,2),(,2,1):}] then adj A=

If [{:( 1,2,3),(1,3,5),(1,5,12):}] then adj (adj A) is

If A=[(3,4,3),(2,5,7),(1,2,3)] then |Adj(Adj A)|=

If A=[{:(1,0,-1),(2,1,3),(0,1, 1):}] then verify that A^(2)+A=A(A+I) , where I is 3xx3 unit matrix.

If A=[(1,2,-1),(-1,1,2),(2,-1,1)] , then det (adj (adjA)) is

If A=[(3,-3,4),(2,-3,4),(0,-1,1)] , then A^(-1)=

Statement -1 : if {:A=[(3,-3,4),(2,-3,4),(0,-1,1)]:} , then adj(adj A)=A Statement -2 If A is a square matrix of order n, then adj(adj A)=absA^(n-2)A

If A^(-1)=[(1,-1,2),(0,3,1),(0,0,-1//3)] , then

Let A=[{:(1,-2,-3),(0,1,0),(-4,1,0):}] Find adj A.

If A=[{:(,1,3,3),(,1,4,3),(,1,3,4):}] then verify that A adj A=|A| I. Also find A^(-1)