Home
Class 12
MATHS
If A satisfies the equation x^3-5x^2+4x+...

If `A` satisfies the equation `x^3-5x^2+4x+lambda=0` , then `A^(-1)` exists if (a)`lambda!=1` (b) `lambda!=2` (c) `lambda!=-1` (d) `lambda!=0`

A

`lambda!=1`

B

`lambda!=2`

C

`lambda!=-1`

D

`lambda!=0`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|9 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|19 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|29 Videos

Similar Questions

Explore conceptually related problems

If f(x)=x^3+4x^2+lambdax+1 is a monotonically decreasing function of x in the largest possible interval (-2,-2/3)dot Then (a ) lambda=4 (b) lambda=2 (c) lambda=-1 (d) lambda has no real value

Let a,b,c be the sides of a triangle. No two of them are equal and lambda in R If the roots of the equation x^2+2(a+b+c)x+3lambda(ab+bc+ca)=0 are real, then (a) lambda 5/3 (c) lambda in (1/5,5/3) (d) lambda in (4/3,5/3)

The system of homogeneous equation lambdax+(lambda+1)y +(lambda-1)z=0, (lambda+1)x+lambday+(lambda+2)z=0, (lambda-1)x+(lambda+2)y + lambdaz=0 has non-trivial solution for :

Function f(x)=cosx-2\ lambda\ x is monotonic decreasing when (a) lambda>1//2 (b) lambda 2

If f(x)=x^3+4x^2+lambdax+1 is a monotonically decreasing function of x in the largest possible interval (-2,-2/3)dot Then (a) lambda=4 (b) lambda=2 lambda=-1 (d) lambda has no real value

If f(x)=x^3+4x^2+lambdax+1 is a monotonically decreasing function of x in the largest possible interval (-2,-2/3)dot Then lambda=4 (b) lambda=2 lambda=-1 (d) lambda has no real value

If the equation |x^2-5x + 6|-lambda x+7 lambda=0 has exactly 3 distinct solutions then lambda is equal to

If the equation x^(3)-6x^(2)+9x+lambda=0 has exactly one root in (1, 3), then lambda belongs to the interval

If the sum of the roots of the equation x^2-x=lambda(2x-1) is zero, then lambda= (a) -2 (b) 2 (c) -1/2 (d) 1/2

If the two roots of the equation (lambda-2)(x^2+x+1)^2-(lambda+2)(x^4+x^2+1) are real and equal for lambda=lambda_1,lambda_2 then lambda_1+lambda_2=0 (b) |lambda_1-lambda_2|=6 (c) lambda_1+lambda_2=32 (d) all of these