Home
Class 12
MATHS
If {:X=[(3,-4),(1,-1)]:}, the value of X...

If `{:X=[(3,-4),(1,-1)]:}`, the value of `X^n` is equal to

A

`[(3n,-4n),(n,-n)]`

B

`[(2n+n,5-n),(n,-n)]`

C

`[(3^(n),(-4)^(n)),(1^(n),(-1)^(n))]`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( X^n \) for the matrix \[ X = \begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix}, \] we will first calculate \( X^2 \) and \( X^3 \) to identify any patterns. ### Step 1: Calculate \( X^2 \) To find \( X^2 \), we multiply \( X \) by itself: \[ X^2 = X \cdot X = \begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix}. \] Calculating the elements of \( X^2 \): - First row, first column: \[ 3 \cdot 3 + (-4) \cdot 1 = 9 - 4 = 5. \] - First row, second column: \[ 3 \cdot (-4) + (-4) \cdot (-1) = -12 + 4 = -8. \] - Second row, first column: \[ 1 \cdot 3 + (-1) \cdot 1 = 3 - 1 = 2. \] - Second row, second column: \[ 1 \cdot (-4) + (-1) \cdot (-1) = -4 + 1 = -3. \] Thus, we have: \[ X^2 = \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}. \] ### Step 2: Calculate \( X^3 \) Now, we calculate \( X^3 \) by multiplying \( X^2 \) by \( X \): \[ X^3 = X^2 \cdot X = \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix} \cdot \begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix}. \] Calculating the elements of \( X^3 \): - First row, first column: \[ 5 \cdot 3 + (-8) \cdot 1 = 15 - 8 = 7. \] - First row, second column: \[ 5 \cdot (-4) + (-8) \cdot (-1) = -20 + 8 = -12. \] - Second row, first column: \[ 2 \cdot 3 + (-3) \cdot 1 = 6 - 3 = 3. \] - Second row, second column: \[ 2 \cdot (-4) + (-3) \cdot (-1) = -8 + 3 = -5. \] Thus, we have: \[ X^3 = \begin{pmatrix} 7 & -12 \\ 3 & -5 \end{pmatrix}. \] ### Step 3: Identify a Pattern From our calculations, we have: - \( X^1 = \begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix} \) - \( X^2 = \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix} \) - \( X^3 = \begin{pmatrix} 7 & -12 \\ 3 & -5 \end{pmatrix} \) There does not appear to be a simple pattern or formula that can be derived from these results. ### Conclusion Since we cannot express \( X^n \) in a simple closed form based on the calculations we performed, the correct option is that there is no general formula for \( X^n \) based on the options provided.
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|9 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|19 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|29 Videos

Similar Questions

Explore conceptually related problems

If f(x) = (x - 1)(x - 2)(x - 3)(x - 4)(x - 5) , then the value of f' (5) is equal to

If f(x)=|x-1|+|x-3| ,then value of f'(2) is equal to

If x=(7+5sqrt(2))^(1/3) -1/((7+5sqrt(2))^(1/3) , then the value of x^3+3x-14 is equal to 1 (b) 0 (c) 2 (d) 4

Let A=[(2, -1, 1),(-2, 3, -1),(-4, 4, -x)] be a matrix. If A^(2)=A , then the value of x is equal to

In the expansion of (3+x/2)^(n) the coefficients of x^(7) and x^(8) are equal, then the value of n is equal to

6. If tan^(−1)(1−x),tan^(−1)(x) and tan^(−1)(1+x) are in A.P., then the value of x^3+x^2 is equal to

Let A=[(x,2,-3),(-1,3,-2),(2,-1,1)] be a matrix and |adj(adjA)|=(12)^(4) , then the sum of all the values of x is equal to

If N is any four digit number say x_1, x_2, x_3, x_4 , then the maximum value ofis equal to N/(x_1+x_2+x_3+x_4) is equal to

If the expression |{:(x^2+x+3,1,4),(2x^4+x^3+2x+1,2,3),(x^2+x,1,1):}| is equal to ax^4+bx^3+cx^2+dx+e , then the value of e is equal to

If 3^(x)=4^(x-1) , then x is equal to