Home
Class 12
MATHS
If A=[(1,0),(1,1)] and I=[(1,0),(0,1)] t...

If `A=[(1,0),(1,1)] and I=[(1,0),(0,1)]` then which one of the following holds for all `nge1` by the principle of mathematica induction? (A) `A^n=2^(n-1) A+(n-1)I` (B) `A^n=nA+(n-1) I` (C) `A^n=2^(n-1) A-(n-1)I` (D) `A^n=nA-(n-1) AI`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to verify which of the given options holds true for the matrix \( A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \) and the identity matrix \( I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \) for all \( n \geq 1 \) using mathematical induction. ### Step 1: Calculate \( A^2 \) We start by calculating \( A^2 \): \[ A^2 = A \cdot A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \] Calculating the product: - First row, first column: \( 1 \cdot 1 + 0 \cdot 1 = 1 \) - First row, second column: \( 1 \cdot 0 + 0 \cdot 1 = 0 \) - Second row, first column: \( 1 \cdot 1 + 1 \cdot 1 = 2 \) - Second row, second column: \( 1 \cdot 0 + 1 \cdot 1 = 1 \) Thus, \[ A^2 = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \] ### Step 2: Calculate \( A^3 \) Next, we calculate \( A^3 \): \[ A^3 = A^2 \cdot A = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \] Calculating the product: - First row, first column: \( 1 \cdot 1 + 0 \cdot 1 = 1 \) - First row, second column: \( 1 \cdot 0 + 0 \cdot 1 = 0 \) - Second row, first column: \( 2 \cdot 1 + 1 \cdot 1 = 3 \) - Second row, second column: \( 2 \cdot 0 + 1 \cdot 1 = 1 \) Thus, \[ A^3 = \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix} \] ### Step 3: Identify the pattern From our calculations, we observe that: - \( A^1 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \) - \( A^2 = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \) - \( A^3 = \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix} \) It appears that the second row's first element is increasing by 1 for each power of \( A \). ### Step 4: Generalize to \( A^n \) We can generalize this pattern to: \[ A^n = \begin{pmatrix} 1 & 0 \\ n & 1 \end{pmatrix} \] ### Step 5: Verify the options Now we need to check which of the given options matches our result: 1. **Option (A)**: \( A^n = 2^{n-1} A + (n-1)I \) 2. **Option (B)**: \( A^n = nA + (n-1)I \) 3. **Option (C)**: \( A^n = 2^{n-1} A - (n-1)I \) 4. **Option (D)**: \( A^n = nA - (n-1)I \) Calculating \( nA + (n-1)I \): \[ nA = n \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} n & 0 \\ n & n \end{pmatrix} \] \[ (n-1)I = (n-1) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} n-1 & 0 \\ 0 & n-1 \end{pmatrix} \] Adding these: \[ nA + (n-1)I = \begin{pmatrix} n & 0 \\ n & n \end{pmatrix} + \begin{pmatrix} n-1 & 0 \\ 0 & n-1 \end{pmatrix} = \begin{pmatrix} 2n-1 & 0 \\ n & n-1 \end{pmatrix} \] This does not match \( A^n \). Calculating \( nA - (n-1)I \): \[ nA - (n-1)I = \begin{pmatrix} n & 0 \\ n & n \end{pmatrix} - \begin{pmatrix} n-1 & 0 \\ 0 & n-1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ n & 1 \end{pmatrix} \] This matches our generalization for \( A^n \). ### Conclusion Thus, the correct option is: **(D) \( A^n = nA - (n-1)I \)**

To solve the problem, we need to verify which of the given options holds true for the matrix \( A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \) and the identity matrix \( I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \) for all \( n \geq 1 \) using mathematical induction. ### Step 1: Calculate \( A^2 \) We start by calculating \( A^2 \): \[ A^2 = A \cdot A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|14 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|29 Videos

Similar Questions

Explore conceptually related problems

Prove by the principle of mathematical induction that for all n in N : 1+4+7++(3n-2)=1/2n(3n-1)

Prove the following by using the principle of mathematical induction for all n in N : 1^2+3^2+5^2+dotdotdot+(2n-1)^2=(n(2n-1)(2n+1))/3

Prove the following by using the principle of mathematical induction for all n in N : 1 + 2 + 3 + ... + n <1/8(2n+1)^2 .

Prove the following by using the principle of mathematical induction for all n in N : (1+1/1)(1+1/2)(1+1/3)...(1+1/n)=(n+1)

Prove the following by using the principle of mathematical induction for all n in N : (1+3/1)(1+5/4)(1+7/9)...(1+((2n+1))/(n^2))=(n+1)^2

Prove the following by using the principle of mathematical induction for all n in N : 1. 2. 3 + 2. 3. 4 + .. . + n(n + 1) (n + 2)=(n(n+1)(n+2)(n+3))/4

Prove the following by using the principle of mathematical induction for all n in N : 1/(1. 2. 3)+1/(2. 3. 4)+1/(3. 4. 5)+...+1/(n(n+1)(n+2))=(n(n+3))/(4(n+1)(n+2))

Prove by the principle of mathematical induction that for all n belongs to N :\ 1/(1. 3)+1/(3.5)+1/(5.7)++1/((2n-1)(2n+1))=n/(2n+1)

Using the principle of mathematical induction, prove that : 1. 2. 3+2. 3. 4++n(n+1)(n+2)=(n(n+1)(n+2)(n+3))/4^ for all n in N .

If A=[1 1 1 0 1 1 0 0 1] , then use the principle of mathematical induction to show that A^n=[1 n n(n+1)//2 0 1 n 0 0 1] for every positive integer n .

ARIHANT MATHS ENGLISH-MATRICES -Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let A=[(1,0,0),(0,1,1),(0,-2,4)],I=[(1,0,0),(0,1,0),(0,0,1)] and A^-1=...

    Text Solution

    |

  2. about to only mathematics

    Text Solution

    |

  3. If A=[(1,0),(1,1)] and I=[(1,0),(0,1)] then which one of the following...

    Text Solution

    |

  4. If A^(2)-A+I=O, then A^(-1) is equal to

    Text Solution

    |

  5. Let {:A=[(1,0,0),(2,1,0),(3,2,1)]:}and U1,U2,U3 be column matrices sat...

    Text Solution

    |

  6. Let A = [(1,0,0), (2,1,0), (3,2,1)], and U1, U2 and U3 are columns of ...

    Text Solution

    |

  7. If A= ((1,0,0),(2,1,0),(3,2,1)), U(1), U(2), and U(3) are column matri...

    Text Solution

    |

  8. Let A=[{:(1,2),(3,4):}]and B = [{:(a,0),(0,b):}] where a, b are natura...

    Text Solution

    |

  9. If A and B are square matrices of size nxxn such that A^2-B^2 = (A-B)(...

    Text Solution

    |

  10. Let A= [[5,5alpha,alpha],[0,alpha,5alpha],[0,0,5]] . If |A^2|...

    Text Solution

    |

  11. Let A and B be 3xx3 matrtices of real numbers, where A is symmetric, "...

    Text Solution

    |

  12. Let A be a square matrix all of whose entries are integers. Then wh...

    Text Solution

    |

  13. Let A be a 2xx2 matrix with real entries. Let I be the 2xx2 identi...

    Text Solution

    |

  14. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  15. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  16. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  17. Let A be a 2xx2 matrix Statement -1 adj (adjA)=A Statement-2 abs(a...

    Text Solution

    |

  18. The number of 3xx3 matrices a whose entries are either 0 or 1 and for ...

    Text Solution

    |

  19. Let P be an odd prime number and T(p) be the following set of 2xx2 mat...

    Text Solution

    |

  20. Let P be an odd prime number and T(p) be the following set of 2xx2 mat...

    Text Solution

    |