Home
Class 12
MATHS
Let {:A=[(1,0,0),(2,1,0),(3,2,1)]:}and U...

Let `{:A=[(1,0,0),(2,1,0),(3,2,1)]:}and U_1,U_2,U_3` be column matrices satisfying `{:AU_1=[(1),(0),(0)],AU_2=[(2),(3),(6)],AU_3=[(2),(3),(1)]:}`.If U is `3xx3` matrix whose columns are `U_1,U_2,U_3," then "absU=`

A

3

B

-3

C

`3//2`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will first define the matrices and then calculate the columns \( U_1, U_2, \) and \( U_3 \) based on the given equations. Finally, we will compute the determinant of the matrix \( U \). ### Step 1: Define the Matrix \( A \) The matrix \( A \) is given as: \[ A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix} \] ### Step 2: Set Up the Column Matrices Let: \[ U_1 = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \quad U_2 = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}, \quad U_3 = \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} \] ### Step 3: Solve for \( U_1 \) We know: \[ AU_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \] This gives us the equation: \[ A \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \] Multiplying out gives: \[ \begin{pmatrix} 1 \cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 \\ 2 \cdot x_1 + 1 \cdot x_2 + 0 \cdot x_3 \\ 3 \cdot x_1 + 2 \cdot x_2 + 1 \cdot x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \] From this, we get the equations: 1. \( x_1 = 1 \) 2. \( 2x_1 + x_2 = 0 \) 3. \( 3x_1 + 2x_2 + x_3 = 0 \) Substituting \( x_1 = 1 \) into the second equation: \[ 2(1) + x_2 = 0 \implies x_2 = -2 \] Substituting \( x_1 = 1 \) and \( x_2 = -2 \) into the third equation: \[ 3(1) + 2(-2) + x_3 = 0 \implies 3 - 4 + x_3 = 0 \implies x_3 = 1 \] Thus, we have: \[ U_1 = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \] ### Step 4: Solve for \( U_2 \) Given: \[ AU_2 = \begin{pmatrix} 2 \\ 3 \\ 6 \end{pmatrix} \] This gives: \[ A \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \\ 6 \end{pmatrix} \] Multiplying out gives: \[ \begin{pmatrix} y_1 \\ 2y_1 + y_2 \\ 3y_1 + 2y_2 + y_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \\ 6 \end{pmatrix} \] From this, we get: 1. \( y_1 = 2 \) 2. \( 2y_1 + y_2 = 3 \) 3. \( 3y_1 + 2y_2 + y_3 = 6 \) Substituting \( y_1 = 2 \) into the second equation: \[ 2(2) + y_2 = 3 \implies 4 + y_2 = 3 \implies y_2 = -1 \] Substituting \( y_1 = 2 \) and \( y_2 = -1 \) into the third equation: \[ 3(2) + 2(-1) + y_3 = 6 \implies 6 - 2 + y_3 = 6 \implies y_3 = 2 \] Thus, we have: \[ U_2 = \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix} \] ### Step 5: Solve for \( U_3 \) Given: \[ AU_3 = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} \] This gives: \[ A \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} \] Multiplying out gives: \[ \begin{pmatrix} z_1 \\ 2z_1 + z_2 \\ 3z_1 + 2z_2 + z_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} \] From this, we get: 1. \( z_1 = 2 \) 2. \( 2z_1 + z_2 = 3 \) 3. \( 3z_1 + 2z_2 + z_3 = 1 \) Substituting \( z_1 = 2 \) into the second equation: \[ 2(2) + z_2 = 3 \implies 4 + z_2 = 3 \implies z_2 = -1 \] Substituting \( z_1 = 2 \) and \( z_2 = -1 \) into the third equation: \[ 3(2) + 2(-1) + z_3 = 1 \implies 6 - 2 + z_3 = 1 \implies z_3 = -3 \] Thus, we have: \[ U_3 = \begin{pmatrix} 2 \\ -1 \\ -3 \end{pmatrix} \] ### Step 6: Form the Matrix \( U \) Now we can form the matrix \( U \): \[ U = \begin{pmatrix} 1 & 2 & 2 \\ -2 & -1 & -1 \\ 1 & 2 & -3 \end{pmatrix} \] ### Step 7: Calculate the Determinant of \( U \) To find the determinant of \( U \): \[ \text{det}(U) = 1 \cdot \begin{vmatrix} -1 & -1 \\ 2 & -3 \end{vmatrix} - 2 \cdot \begin{vmatrix} -2 & -1 \\ 1 & -3 \end{vmatrix} + 2 \cdot \begin{vmatrix} -2 & -1 \\ 1 & 2 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} -1 & -1 \\ 2 & -3 \end{vmatrix} = (-1)(-3) - (-1)(2) = 3 + 2 = 5 \) 2. \( \begin{vmatrix} -2 & -1 \\ 1 & -3 \end{vmatrix} = (-2)(-3) - (-1)(1) = 6 + 1 = 7 \) 3. \( \begin{vmatrix} -2 & -1 \\ 1 & 2 \end{vmatrix} = (-2)(2) - (-1)(1) = -4 + 1 = -3 \) Putting it all together: \[ \text{det}(U) = 1 \cdot 5 - 2 \cdot 7 + 2 \cdot (-3) = 5 - 14 - 6 = -15 \] ### Final Result Thus, the determinant of \( U \) is: \[ \text{det}(U) = -15 \]

To solve the problem step by step, we will first define the matrices and then calculate the columns \( U_1, U_2, \) and \( U_3 \) based on the given equations. Finally, we will compute the determinant of the matrix \( U \). ### Step 1: Define the Matrix \( A \) The matrix \( A \) is given as: \[ A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|14 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|29 Videos

Similar Questions

Explore conceptually related problems

If A= ((1,0,0),(2,1,0),(3,2,1)), U_(1), U_(2), and U_(3) are column matrices satisfying AU_(1) =((1),(0),(0)), AU_(2) = ((2),(3),(0))and AU_(3) = ((2),(3),(1)) and U is 3xx3 matrix when columns are U_(1), U_(2), U_(3) then answer the following questions The value of (3 2 0) U((3),(2),(0)) is

Let A = [(1,0,0), (2,1,0), (3,2,1)], and U_1, U_2 and U_3 are columns of a 3 xx 3 matrix U . If column matrices U_1, U_2 and U_3 satisfy AU_1 = [(1),(0),(0)], AU_2 = [(2),(3),(0)], AU_3 = [(2),(3),(1)] then the sum of the elements of the matrix U^(-1) is

Let A=((1,0,0),(2,1,0),(3,2,1)) . If u_(1) and u_(2) are column matrices such that Au_(1)=((1),(0),(0)) and Au_(2)=((0),(1),(0)) , then u_(1)+u_(2) is equal to :

Let for A=[(1,0,0),(2,1,0),(3,2,1)] , there be three row matrices R_(1), R_(2) and R_(3) , satifying the relations, R_(1)A=[(1,0,0)], R_(2)A=[(2,3,0)] and R_(3)A=[(2,3,1)] . If B is square matrix of order 3 with rows R_(1), R_(2) and R_(3) in order, then The value of det. (2A^(100) B^(3)-A^(99) B^(4)) is

Let A= [[1,0,0],[2,1,0],[3,2,1]] be a square matrix and C_(1), C_(2), C_(3) be three column matrices satisfying AC_(1) = [[1],[0],[0]], AC_(2) = [[2],[3],[0]] and AC_(3)= [[2],[3],[1]] of matrix B. If the matrix C= 1/3 (AcdotB). The ratio of the trace of the matrix B to the matrix C, is

Let A= [[1,0,0],[2,1,0],[3,2,1]] be a square matrix and C_(1), C_(2), C_(3) be three comumn matrices satisfying AC_(1) = [[1],[0],[0]], AC_(2) = [[2],[3],[0]] and AC_(3)= [[2],[3],[1]] of matrix B. If the matrix C= 1/3 (AcdotB). The value of det(B^(-1)) , is

Let A= [[1,0,0],[2,1,0],[3,2,1]] be a square matrix and C_(1), C_(2), C_(3) be three comumn matrices satisgying AC_(1) = [[1],[0],[0]], AC_(2) = [[2],[3],[0]] and AC_(3)= [[2],[3],[1]] of matrix B. If the matrix C= 1/3 (AcdotB). find sin^(-1) (detA) + tan^(-1) (9det C)

If U={:[(1,2,2),(-2,-1,-1),(1,-4,-3)]:}' ,sum of elements of inverse of U is

Let A={:[(1,2,3),(0,1,0)]:}andB={:[(-1,4,3),(1,0,0)]:} Find 2A +3B.

Let a be a 3xx3 matric such that [(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),(1,0,0),(0,1,0)] , then find A^(-1) .

ARIHANT MATHS ENGLISH-MATRICES -Exercise (Questions Asked In Previous 13 Years Exam)
  1. If A=[(1,0),(1,1)] and I=[(1,0),(0,1)] then which one of the following...

    Text Solution

    |

  2. If A^(2)-A+I=O, then A^(-1) is equal to

    Text Solution

    |

  3. Let {:A=[(1,0,0),(2,1,0),(3,2,1)]:}and U1,U2,U3 be column matrices sat...

    Text Solution

    |

  4. Let A = [(1,0,0), (2,1,0), (3,2,1)], and U1, U2 and U3 are columns of ...

    Text Solution

    |

  5. If A= ((1,0,0),(2,1,0),(3,2,1)), U(1), U(2), and U(3) are column matri...

    Text Solution

    |

  6. Let A=[{:(1,2),(3,4):}]and B = [{:(a,0),(0,b):}] where a, b are natura...

    Text Solution

    |

  7. If A and B are square matrices of size nxxn such that A^2-B^2 = (A-B)(...

    Text Solution

    |

  8. Let A= [[5,5alpha,alpha],[0,alpha,5alpha],[0,0,5]] . If |A^2|...

    Text Solution

    |

  9. Let A and B be 3xx3 matrtices of real numbers, where A is symmetric, "...

    Text Solution

    |

  10. Let A be a square matrix all of whose entries are integers. Then wh...

    Text Solution

    |

  11. Let A be a 2xx2 matrix with real entries. Let I be the 2xx2 identi...

    Text Solution

    |

  12. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  13. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  14. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  15. Let A be a 2xx2 matrix Statement -1 adj (adjA)=A Statement-2 abs(a...

    Text Solution

    |

  16. The number of 3xx3 matrices a whose entries are either 0 or 1 and for ...

    Text Solution

    |

  17. Let P be an odd prime number and T(p) be the following set of 2xx2 mat...

    Text Solution

    |

  18. Let P be an odd prime number and T(p) be the following set of 2xx2 mat...

    Text Solution

    |

  19. Let P be an odd prime number and T(p) be the following set of 2xx2 mat...

    Text Solution

    |

  20. Let K be a positive real number and A=[(2k-1,2sqrt(k),2sqrt(k)),(2sqrt...

    Text Solution

    |