Home
Class 12
MATHS
If the adjoint of a 3x3 matrix P is (1 ...

If the adjoint of a 3x3 matrix P is (1 4 4) (2 1 7) (1 1 3) , then the possible value(s) of the determinant of P is (are) (A) -2 (B) -1 (C) 1 (D) 2

A

-2

B

-1

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To find the possible values of the determinant of the matrix \( P \) given that the adjoint of \( P \) is \[ \text{adj}(P) = \begin{pmatrix} 1 & 4 & 4 \\ 2 & 1 & 7 \\ 1 & 1 & 3 \end{pmatrix} \] we will follow these steps: ### Step 1: Calculate the Determinant of the Adjoint Matrix We need to find the determinant of the adjoint matrix \( \text{adj}(P) \). The determinant of a \( 3 \times 3 \) matrix \[ \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \] is calculated using the formula: \[ \text{det} = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix: \[ \begin{pmatrix} 1 & 4 & 4 \\ 2 & 1 & 7 \\ 1 & 1 & 3 \end{pmatrix} \] we have \( a = 1, b = 4, c = 4, d = 2, e = 1, f = 7, g = 1, h = 1, i = 3 \). Calculating the determinant: \[ \text{det}(\text{adj}(P)) = 1(1 \cdot 3 - 7 \cdot 1) - 4(2 \cdot 3 - 7 \cdot 1) + 4(2 \cdot 1 - 1 \cdot 1) \] Calculating each term: 1. First term: \( 1(3 - 7) = 1(-4) = -4 \) 2. Second term: \( -4(6 - 7) = -4(-1) = 4 \) 3. Third term: \( 4(2 - 1) = 4(1) = 4 \) Now summing these values: \[ \text{det}(\text{adj}(P)) = -4 + 4 + 4 = 4 \] ### Step 2: Use the Property of Determinants We know that for a \( n \times n \) matrix \( P \): \[ \text{det}(\text{adj}(P)) = (\text{det}(P))^{n-1} \] For our case, \( n = 3 \): \[ \text{det}(\text{adj}(P)) = (\text{det}(P))^{3-1} = (\text{det}(P))^2 \] Substituting the value we found: \[ 4 = (\text{det}(P))^2 \] ### Step 3: Solve for the Determinant of \( P \) Taking the square root of both sides: \[ \text{det}(P) = \pm \sqrt{4} = \pm 2 \] ### Conclusion The possible values of the determinant of \( P \) are \( 2 \) and \( -2 \). Thus, the answer is: **Option A: -2 and Option D: 2 are correct.**

To find the possible values of the determinant of the matrix \( P \) given that the adjoint of \( P \) is \[ \text{adj}(P) = \begin{pmatrix} 1 & 4 & 4 \\ 2 & 1 & 7 \\ 1 & 1 & 3 \end{pmatrix} \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|14 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|29 Videos

Similar Questions

Explore conceptually related problems

If the adjoint of a 3 xx 3 matrix P is [{:(,1,4,4),(,2,1,7),(,1,1,3):}] , then the possible value(s) of the determinant of P is (are)

The adjoint of the matrix A= [{:( 1,2),( 3,-5) :}] is

1.Find the adjoint of the matrix A= [[1,2],[3,4]]

Find the adjoint of the matrix A=[(1,1,1),(2,1,-3),(-1,2,3)] .

If A=[(1,x,3),(1,3,3),(2,4,4)] is the adjoint of a 3xx3 matrix B and det. (B)=4 , then the value of x is ______ .

Let P be a matrix of order 3xx3 such that all the entries in P are from the set {-1,\ 0,\ 1} . Then, the maximum possible value of the determinant of P is ______.

Find the adjoint of matrix A=[a_(i j)]=|[1, 1, 1], [2, 1,-3],[-1, 2, 3]| .

Find the adjoint of matrix A=[a_(i j)]=[[1, 1, 1],[ 2, 1,-3],[-1, 2, 3]]

If P=[(1,alpha,3),(1,3,3),(2,4,4)] is the adjoint of a 3 x 3 matrix A and |A| = 4 , then alpha is equal to

If matrix A = [{:(2,-2),(-2,2):}] , and A^2 = p A , then write the value of p . a) 1 b) 2 c) 3 d) 4

ARIHANT MATHS ENGLISH-MATRICES -Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let M be a 3xx3 matrix satisfying M[0 1 0]=M[1-1 0]=[1 1-1],a n dM[1 1...

    Text Solution

    |

  2. Let A and B two symmetric matrices of order 3. Statement 1 : A(BA) a...

    Text Solution

    |

  3. Let P=[a(i j)] be a 3xx3 matrix and let Q=[b(i j)],w h e r eb(i j)=2^(...

    Text Solution

    |

  4. If P is a 3xx3 matrix such that P^T = 2P+I, where P^T is the transpose...

    Text Solution

    |

  5. If the adjoint of a 3x3 matrix P is (1 4 4) (2 1 7) (1 1 3) , t...

    Text Solution

    |

  6. Let A=((1,0,0),(2,1,0),(3,2,1)). If u(1) and u(2) are column matrices ...

    Text Solution

    |

  7. Let P and Q be 3xx3 matrices P ne Q. If P^(3)=Q^(3) and P^(2)Q=Q^(2)P,...

    Text Solution

    |

  8. IF P=[(1,alpha,3),(1,3,3),(2,4,4)] is the adjoint of 3xx3 matrix A and...

    Text Solution

    |

  9. For 3xx3 matrices M \ a n d \ N , which of the following statement (s)...

    Text Solution

    |

  10. Let omega be a complex cube root of unity with omega!=1a n dP=[p(i j)]...

    Text Solution

    |

  11. If A is an 3xx3 non-singular matrix such that A A^T=A^TA and B=A^(-1)A...

    Text Solution

    |

  12. Let M be a 2xx2 symmetric matrix with integer entries. Then , M is i...

    Text Solution

    |

  13. Let M and N be two 3xx3 matrices such that MN=NM. Further, if M ne N^(...

    Text Solution

    |

  14. If A=[(1,2,2),(2,1,-2),(a,2,b)] is a matrix satisying the equation A A...

    Text Solution

    |

  15. Let X \ a n d \ Y be two arbitrary, 3xx3 , non-zero, skew-symmetric ma...

    Text Solution

    |

  16. If A=[(5a,-b),(3,2)] and A adj A=A A^(T), then 5a+b is equal to

    Text Solution

    |

  17. Let p=[(3,-1,-2),(2,0,alpha),(3,-5,0)], where alpha in RR. Suppose Q=[...

    Text Solution

    |

  18. Let z=(-1+sqrt(3)i)/(2), where i=sqrt(-1), and r, s in {1, 2, 3}. Let ...

    Text Solution

    |

  19. Let P=[(1,0,0),(3,1,0),(9,3,1)] and Q = [q(ij)] be two 3xx3 matrices s...

    Text Solution

    |

  20. If A=[(2,-3),(-4,1)], then adj (3A^(2)+12 A) is equal to

    Text Solution

    |