Home
Class 12
MATHS
Let omega be a complex cube root of unit...

Let `omega` be a complex cube root of unity with `omega!=1a n dP=[p_(i j)]` be a `nxxn` matrix withe `p_(i j)=omega^(i+j)dot` Then `p^2!=O ,when=` a.`57` b. `55` c. `58` d. `56`

A

55

B

56

C

57

D

58

Text Solution

Verified by Experts

The correct Answer is:
A, B, D

`P = [p_(ij)]_(nxxn)=[omega^(i+j)]_(nxxn) = [[omega^(2), omega^(3),omega^(4),...omega^(1+n)],[omega^(3), omega^(4),omega^(5) ,...omega^(2+n)],[omega^(4),omega^(5),omega^(6),...omega^(3+n)],[vdots,vdots,vdots,vdots],[omega^(n+1),omega^(n+2),omega^(n+3),...omega^(2n)]]`
`therefore P^(2) = [[0, 0,0,...0],[0, 0, 0,...0],[0,0,0,...0],[vdots,vdots,vdots,vdots],[0,0,0,...0]]=0`
If n is multiple of 3, so for `P^(2) ne 0, n` should not be a multiple of
3, i.e., n can take values `55, 56` and 58.`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|14 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|29 Videos

Similar Questions

Explore conceptually related problems

If omega is the complex cube root of unity then |[1,1+i+omega^2,omega^2],[1-i,-1,omega^2-1],[-i,-i+omega-1,-1]|=

If 1, omega and omega^(2) are the cube roots of unity, prove that (a+b omega+c omega^(2))/(c+a omega+b omega^(2))=omega^(2)

Let omega(omega ne 1) is a cube root of unity, such that (1+omega^(2))^(8)=a+bomega where a, b in R, then |a+b| is equal to

If omega is a complex cube roots of unity, then find the value of the (1+ omega)(1+ omega^(2))(1+ omega^(4)) (1+ omega^(8)) … to 2n factors.

If omega is a complex cube root of unity, then ((1+i)^(2n)-(1-i)^(2n))/((1+omega^(4)-omega^(2))(1-omega^(4)+omega^(4)) is equal to

If, 1, omega, omega^(2) are cube roots of unity, show that (p + qomega + r omega^(2))/(r + p omega + q omega^(2))= omega^(2)

If omega is an imaginary cube root of unity, then (1+omega-omega^2)^7 is equal to 128omega (b) -128omega 128omega^2 (d) -128omega^2

If omega is an imaginary cube root of unity, then (1+omega-omega^2)^7 is equal to 128omega (b) -128omega 128omega^2 (d) -128omega^2

If omega is a complex nth root of unity, then sum_(r=1)^n(a+b)omega^(r-1) is equal to (n(n+1)a)/2 b. (n b)/(1+n) c. (n a)/(omega-1) d. none of these

If omega is a cube root of unity, then |(1-i,omega^2, -omega),(omega^2+i, omega, -i),(1-2i-omega^2, omega^2-omega,i-omega)| =

ARIHANT MATHS ENGLISH-MATRICES -Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let M be a 3xx3 matrix satisfying M[0 1 0]=M[1-1 0]=[1 1-1],a n dM[1 1...

    Text Solution

    |

  2. Let A and B two symmetric matrices of order 3. Statement 1 : A(BA) a...

    Text Solution

    |

  3. Let P=[a(i j)] be a 3xx3 matrix and let Q=[b(i j)],w h e r eb(i j)=2^(...

    Text Solution

    |

  4. If P is a 3xx3 matrix such that P^T = 2P+I, where P^T is the transpose...

    Text Solution

    |

  5. If the adjoint of a 3x3 matrix P is (1 4 4) (2 1 7) (1 1 3) , t...

    Text Solution

    |

  6. Let A=((1,0,0),(2,1,0),(3,2,1)). If u(1) and u(2) are column matrices ...

    Text Solution

    |

  7. Let P and Q be 3xx3 matrices P ne Q. If P^(3)=Q^(3) and P^(2)Q=Q^(2)P,...

    Text Solution

    |

  8. IF P=[(1,alpha,3),(1,3,3),(2,4,4)] is the adjoint of 3xx3 matrix A and...

    Text Solution

    |

  9. For 3xx3 matrices M \ a n d \ N , which of the following statement (s)...

    Text Solution

    |

  10. Let omega be a complex cube root of unity with omega!=1a n dP=[p(i j)]...

    Text Solution

    |

  11. If A is an 3xx3 non-singular matrix such that A A^T=A^TA and B=A^(-1)A...

    Text Solution

    |

  12. Let M be a 2xx2 symmetric matrix with integer entries. Then , M is i...

    Text Solution

    |

  13. Let M and N be two 3xx3 matrices such that MN=NM. Further, if M ne N^(...

    Text Solution

    |

  14. If A=[(1,2,2),(2,1,-2),(a,2,b)] is a matrix satisying the equation A A...

    Text Solution

    |

  15. Let X \ a n d \ Y be two arbitrary, 3xx3 , non-zero, skew-symmetric ma...

    Text Solution

    |

  16. If A=[(5a,-b),(3,2)] and A adj A=A A^(T), then 5a+b is equal to

    Text Solution

    |

  17. Let p=[(3,-1,-2),(2,0,alpha),(3,-5,0)], where alpha in RR. Suppose Q=[...

    Text Solution

    |

  18. Let z=(-1+sqrt(3)i)/(2), where i=sqrt(-1), and r, s in {1, 2, 3}. Let ...

    Text Solution

    |

  19. Let P=[(1,0,0),(3,1,0),(9,3,1)] and Q = [q(ij)] be two 3xx3 matrices s...

    Text Solution

    |

  20. If A=[(2,-3),(-4,1)], then adj (3A^(2)+12 A) is equal to

    Text Solution

    |