Home
Class 12
MATHS
Let p=[(3,-1,-2),(2,0,alpha),(3,-5,0)], ...

Let `p=[(3,-1,-2),(2,0,alpha),(3,-5,0)],` where `alpha in RR.` Suppose `Q=[q_(ij)]` is a matrix such that `PQ=kI,` where `k in RR, k != 0 and I`is the identity matrix of order 3. If `q_23=-k/8 and det(Q)=k^2/2,` then

A

`alpha = 0, k=8`

B

`4alpha -k + 8 =0`

C

`det (padj(Q) ) = 2^(9)`

D

`det (Qadj(P) ) = 2^(13)`

Text Solution

Verified by Experts

The correct Answer is:
B, C

`because PQ = kI rArr (P.Q)/k = I rArr P^(-1) = Q/k" " ...(i)`
Also `abs(P) = 12 alpha +20 " " (ii)`
and `" "`given ` q_(23) = (-k)/8`
Comoaring the third element of `2^(nd)` row no both sides,
we get `1/((12alpha + 20))(-(3alpha + 4)) = 1/k xx (-k)/8`
`rArr 24 alpha + 32= 12 alpha + 20`
` alpha = -1` ...(iii)
From (ii), `abs(P)=8` ...(iv)
Also `PQ= kI`
`rArrabs(PQ) = abs(kI)`
`rArr abs(P) abs(Q) = k^(3)`
`rArr 8xx (k^(2))/2 = k^(3) " " (because abs(P) = 8, abs(Q) = k^(2)/2)`
`therefore k= 4 " " ...(v)`
(b) `4 alpha - k + 8 = -4 -4 + 8 = 0`
(c) `det(P " adj" (Q)) = abs(P) abs("adj" Q) = abs(P) abs(Q)^(2) = 8xx8^(2) = 2^(9)`
(d) `det(Q " adj" (P)) = abs(Q) abs("adj" P) = abs(Q) abs(P)^(2) = 8xx8^(2) = 2^(9)`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|14 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|29 Videos

Similar Questions

Explore conceptually related problems

Let A=[("tan"pi/3,"sec" (2pi)/3),(cot (2013 pi/3),cos (2012 pi))] and P be a 2 xx 2 matrix such that P P^(T)=I , where I is an identity matrix of order 2. If Q=PAP^(T) and R=[r_("ij")]_(2xx2)=P^(T) Q^(8) P , then find r_(11) .

If M is a 3 xx 3 matrix, where det M=1 and MM^T=1, where I is an identity matrix, prove theat det (M-I)=0.

Let A be a square matrix of order 2 such that A^(2)-4A+4I=0 , where I is an identity matrix of order 2. If B=A^(5)+4A^(4)+6A^(3)+4A^(2)+A-162I , then det(B) is equal to _________

If A is square matrix of order 3 matrix, |A| != 0 and |3A|=k|A| , then write the value of k .

If A=[(1, 0,-3 ),(2, 1 ,3 ),(0, 1 ,1)] , then verify that A^2+A=A(A+I) , where I is the identity matrix.

Let A=[(0, i),(i, 0)] , where i^(2)=-1 . Let I denotes the identity matrix of order 2, then I+A+A^(2)+A^(3)+……..A^(110) is equal to

A square matrix [a_(ij)] such that a_(ij)=0 for i ne j and a_(ij) = k where k is a constant for i = j is called _____

Let P=[[1,0,0],[4,1,0],[16,4,1]] and I be the identity matrix of order 3 . If Q = [q_()ij ] is a matrix, such that P^(50)-Q=I , then (q_(31)+q_(32))/q_(21) equals

If P=[(6,-2),(4,-6):}] and Q = [{:(5,3),(2,0):}] find the matrix M such that 2Q - 3P - 3M =0

If A=(3 5 7 9) is written as A = P + Q, where P is a symmetric matrix and Q is skew symmetric matrix, then write the matrix P.

ARIHANT MATHS ENGLISH-MATRICES -Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let M be a 3xx3 matrix satisfying M[0 1 0]=M[1-1 0]=[1 1-1],a n dM[1 1...

    Text Solution

    |

  2. Let A and B two symmetric matrices of order 3. Statement 1 : A(BA) a...

    Text Solution

    |

  3. Let P=[a(i j)] be a 3xx3 matrix and let Q=[b(i j)],w h e r eb(i j)=2^(...

    Text Solution

    |

  4. If P is a 3xx3 matrix such that P^T = 2P+I, where P^T is the transpose...

    Text Solution

    |

  5. If the adjoint of a 3x3 matrix P is (1 4 4) (2 1 7) (1 1 3) , t...

    Text Solution

    |

  6. Let A=((1,0,0),(2,1,0),(3,2,1)). If u(1) and u(2) are column matrices ...

    Text Solution

    |

  7. Let P and Q be 3xx3 matrices P ne Q. If P^(3)=Q^(3) and P^(2)Q=Q^(2)P,...

    Text Solution

    |

  8. IF P=[(1,alpha,3),(1,3,3),(2,4,4)] is the adjoint of 3xx3 matrix A and...

    Text Solution

    |

  9. For 3xx3 matrices M \ a n d \ N , which of the following statement (s)...

    Text Solution

    |

  10. Let omega be a complex cube root of unity with omega!=1a n dP=[p(i j)]...

    Text Solution

    |

  11. If A is an 3xx3 non-singular matrix such that A A^T=A^TA and B=A^(-1)A...

    Text Solution

    |

  12. Let M be a 2xx2 symmetric matrix with integer entries. Then , M is i...

    Text Solution

    |

  13. Let M and N be two 3xx3 matrices such that MN=NM. Further, if M ne N^(...

    Text Solution

    |

  14. If A=[(1,2,2),(2,1,-2),(a,2,b)] is a matrix satisying the equation A A...

    Text Solution

    |

  15. Let X \ a n d \ Y be two arbitrary, 3xx3 , non-zero, skew-symmetric ma...

    Text Solution

    |

  16. If A=[(5a,-b),(3,2)] and A adj A=A A^(T), then 5a+b is equal to

    Text Solution

    |

  17. Let p=[(3,-1,-2),(2,0,alpha),(3,-5,0)], where alpha in RR. Suppose Q=[...

    Text Solution

    |

  18. Let z=(-1+sqrt(3)i)/(2), where i=sqrt(-1), and r, s in {1, 2, 3}. Let ...

    Text Solution

    |

  19. Let P=[(1,0,0),(3,1,0),(9,3,1)] and Q = [q(ij)] be two 3xx3 matrices s...

    Text Solution

    |

  20. If A=[(2,-3),(-4,1)], then adj (3A^(2)+12 A) is equal to

    Text Solution

    |