Home
Class 12
MATHS
If cos x- sin x ge 1 and 0 le x le 2pi ...

If ` cos x- sin x ge 1 and 0 le x le 2pi` , then find the solution set for x .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \cos x - \sin x \geq 1 \) for \( 0 \leq x \leq 2\pi \), we will follow these steps: ### Step 1: Rearranging the Inequality We start with the inequality: \[ \cos x - \sin x \geq 1 \] Rearranging gives: \[ \cos x - 1 \geq \sin x \] ### Step 2: Multiplying by \( \frac{1}{\sqrt{2}} \) Next, we multiply both sides of the inequality by \( \frac{1}{\sqrt{2}} \): \[ \frac{1}{\sqrt{2}} \cos x - \frac{1}{\sqrt{2}} \sin x \geq \frac{1}{\sqrt{2}} \] This can be rewritten using the angle \( \frac{\pi}{4} \): \[ \frac{1}{\sqrt{2}} \cos x - \frac{1}{\sqrt{2}} \sin x = \cos\left(x + \frac{\pi}{4}\right) \] Thus, we have: \[ \cos\left(x + \frac{\pi}{4}\right) \geq \frac{1}{\sqrt{2}} \] ### Step 3: Finding the General Solution The inequality \( \cos A \geq \frac{1}{\sqrt{2}} \) holds for: \[ A \in [0, \frac{\pi}{4}] \cup [\frac{7\pi}{4}, 2\pi] \] Substituting back for \( A \): \[ x + \frac{\pi}{4} \in [0, \frac{\pi}{4}] \cup [\frac{7\pi}{4}, 2\pi] \] ### Step 4: Solving for \( x \) 1. From the first interval: \[ 0 \leq x + \frac{\pi}{4} \leq \frac{\pi}{4} \] Subtracting \( \frac{\pi}{4} \): \[ -\frac{\pi}{4} \leq x \leq 0 \] Since \( x \) must be in the range \( [0, 2\pi] \), the only valid solution here is: \[ x = 0 \] 2. From the second interval: \[ \frac{7\pi}{4} \leq x + \frac{\pi}{4} \leq 2\pi \] Subtracting \( \frac{\pi}{4} \): \[ \frac{7\pi}{4} - \frac{\pi}{4} \leq x \leq 2\pi - \frac{\pi}{4} \] Simplifying gives: \[ \frac{6\pi}{4} \leq x \leq \frac{8\pi}{4} - \frac{\pi}{4} \] Which simplifies to: \[ \frac{3\pi}{2} \leq x \leq \frac{7\pi}{4} \] ### Step 5: Final Solution Set Combining the results from both intervals, we find: \[ x = 0 \quad \text{and} \quad \frac{3\pi}{2} \leq x \leq \frac{7\pi}{4} \] Thus, the solution set is: \[ \{0\} \cup \left[\frac{3\pi}{2}, \frac{7\pi}{4}\right] \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|60 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|25 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|10 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Three Dimensional Coordinate System Exercise 12 : Question Asked in Previous Years Exam|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

If 4 sin^(2) x-8sin x+ 3 le 0,0le x le 2pi then the solution set for x is

If 2"sin" x -1 le 0 "and "x in [0, 2 pi] , then the solution set for x, is

If a. 3^(tanx) + a. 3^(-tanx) - 2 = 0 has real solutions, x != pi/2 , 0 le x le pi, then find the set of all possible values of parameter 'a'.

If cos x=sqrt(1-sin 2x),0 le x le pi then a value of x is

If sin^4x + cos^4y + 2 = 4 sin x.cos y and 0 le x, y le pi/2 then sin x + cos y is equal to

If "log"_(sqrt(3))("sin" x + 2sqrt(2) "cos"x) ge 2, -2pi le x le 2 pi, then the number of values of x, is

If 4cos^(2)x^(@)-1=0 and 0 le x^(@) le 90^(@) , find : x^(@)

If 4cos^(2)x^(@)-1=0 and 0 le x^(@) le 90^(@) , find : x^(@)

Let f(x)=min{1,cos x,1-sinx}, -pi le x le pi , Then, f(x) is