Home
Class 12
MATHS
alpha is a root of equation ( 2 sin x -...

`alpha ` is a root of equation `( 2 sin x - cos x ) (1+ cos x)=sin^2 x , beta ` is a root of the equation ` 3 cos 2x - 10 cos x +3 =0 and gamma ` is a root of the equation `1-sin2 x = cos x- sin x : 0 le alpha , beta, gamma , le pi//2 `
` cos alpha + cos beta + cos gamma ` can be equal to

A

`(3sqrt(6)+2sqrt(2)+6)/(6sqrt(2))`

B

`(3sqrt(3)-8)/(6)`

C

`(3sqrt(3)+2)/(6)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the values of \( \alpha \), \( \beta \), and \( \gamma \) from the given equations and then calculate \( \cos \alpha + \cos \beta + \cos \gamma \). ### Step 1: Solve for \( \alpha \) We start with the equation: \[ (2 \sin x - \cos x)(1 + \cos x) = \sin^2 x \] Expanding the left-hand side: \[ 2 \sin x(1 + \cos x) - \cos x(1 + \cos x) = \sin^2 x \] \[ 2 \sin x + 2 \sin x \cos x - \cos x - \cos^2 x = \sin^2 x \] Rearranging gives: \[ 2 \sin x + 2 \sin x \cos x - \cos x - \cos^2 x - \sin^2 x = 0 \] Using the identity \( \sin^2 x + \cos^2 x = 1 \): \[ 2 \sin x + 2 \sin x \cos x - \cos x - 1 = 0 \] Now, factor out \( (1 + \cos x) \): \[ (1 + \cos x)(2 \sin x - 1) = 0 \] Setting each factor to zero: 1. \( 1 + \cos x = 0 \) gives \( \cos x = -1 \) (not valid in \( [0, \frac{\pi}{2}] \)). 2. \( 2 \sin x - 1 = 0 \) gives \( \sin x = \frac{1}{2} \) which implies \( x = \frac{\pi}{6} \). Thus, \( \alpha = \frac{\pi}{6} \). ### Step 2: Solve for \( \beta \) Next, we solve the equation: \[ 3 \cos^2 x - 10 \cos x + 3 = 0 \] Let \( y = \cos x \): \[ 3y^2 - 10y + 3 = 0 \] Using the quadratic formula: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{10 \pm \sqrt{(-10)^2 - 4 \cdot 3 \cdot 3}}{2 \cdot 3} \] \[ y = \frac{10 \pm \sqrt{100 - 36}}{6} = \frac{10 \pm \sqrt{64}}{6} = \frac{10 \pm 8}{6} \] Calculating the roots: 1. \( y = \frac{18}{6} = 3 \) (not valid). 2. \( y = \frac{2}{6} = \frac{1}{3} \). Thus, \( \cos \beta = \frac{1}{3} \) implies \( \beta = \cos^{-1}(\frac{1}{3}) \). ### Step 3: Solve for \( \gamma \) Now, we solve: \[ 1 - \sin 2x = \cos x - \sin x \] Using the identity \( \sin 2x = 2 \sin x \cos x \): \[ 1 - 2 \sin x \cos x = \cos x - \sin x \] Rearranging gives: \[ 1 - \cos x + \sin x - 2 \sin x \cos x = 0 \] Factoring: \[ (1 - \cos x) + \sin x(1 - 2 \cos x) = 0 \] Setting each factor to zero: 1. \( 1 - \cos x = 0 \) gives \( \cos x = 1 \) (implies \( x = 0 \)). 2. \( 1 - 2 \cos x = 0 \) gives \( \cos x = \frac{1}{2} \) which implies \( x = \frac{\pi}{3} \). Thus, \( \gamma = 0 \) or \( \frac{\pi}{3} \). ### Step 4: Calculate \( \cos \alpha + \cos \beta + \cos \gamma \) Now we find: - \( \cos \alpha = \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2} \) - \( \cos \beta = \frac{1}{3} \) - \( \cos \gamma = 1 \) (if \( \gamma = 0 \)) or \( \cos \frac{\pi}{3} = \frac{1}{2} \). Calculating \( \cos \alpha + \cos \beta + \cos \gamma \): 1. If \( \gamma = 0 \): \[ \cos \alpha + \cos \beta + \cos \gamma = \frac{\sqrt{3}}{2} + \frac{1}{3} + 1 \] Finding a common denominator (6): \[ = \frac{3\sqrt{3}}{6} + \frac{2}{6} + \frac{6}{6} = \frac{3\sqrt{3} + 8}{6} \] 2. If \( \gamma = \frac{\pi}{3} \): \[ \cos \alpha + \cos \beta + \cos \gamma = \frac{\sqrt{3}}{2} + \frac{1}{3} + \frac{1}{2} \] Finding a common denominator (6): \[ = \frac{3\sqrt{3}}{6} + \frac{2}{6} + \frac{3}{6} = \frac{3\sqrt{3} + 5}{6} \] ### Final Answer Thus, the possible values for \( \cos \alpha + \cos \beta + \cos \gamma \) can be: - \( \frac{3\sqrt{3} + 8}{6} \) or \( \frac{3\sqrt{3} + 5}{6} \).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|11 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|6 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|25 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Three Dimensional Coordinate System Exercise 12 : Question Asked in Previous Years Exam|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

alpha is a root of equation ( 2 sin x - cos x ) (1+ cos x)=sin^2 x , beta is a root of the equation 3 cos 2x - 10 cos x +3 =0 and gamma is a root of the equation 1-sin2 x = cos x- sin x : 0 le alpha , beta, gamma , le pi//2 sin (alpha - beta ) is equal to

alpha is a root of equation ( 2 sin x - cos x ) (1+ cos x)=sin^2 x , beta is a root of the equation 3 cos ^2x - 10 cos x +3 =0 and gamma is a root of the equation 1-sin2 x = cos x- sin x : 0 le alpha , beta, gamma , le pi//2 sin alpha + sin beta + sin gamma can be equal to

Solve the equation ( sin x + cos x )^(1+ sin 2x )=2 , when -pi le x le pi .

Solve the equation 4 sin x cos x + 2 sin x + 2 cos x + 1 = 0

Find all the number 'a' for which any root of the equation sin 3x =a sin x +(4-2|a|)sin^(2) x is a root of the equation sin 3x + cos 2 x =1+2 sinx cos 2x and any root of the latter equation is a root of the former .

If alpha , beta, gamma are the roots of x^3+x^2-5x-1=0 then alpha+beta+gamma is equal to

Solve the equation for 0 le x le 2pi. sin x cos x =0

Given that alpha , gamma are roots of the equation Ax^(2)-4x+1=0 and beta , delta are roots of the equation Bx^(2)-6x+1=0 . If alpha , beta , gamma and delta are in H.P. , then

The solution of the equation "cos"^(2) x-2 "cos" x = 4 "sin" x - "sin" 2x (0 le x le pi) , is

Solve the equation sqrt3 cos x + sin x =1 for - 2pi lt x le 2pi.