Home
Class 12
MATHS
alpha is a root of equation ( 2 sin x -...

`alpha ` is a root of equation `( 2 sin x - cos x ) (1+ cos x)=sin^2 x , beta ` is a root of the equation ` 3 cos ^2x - 10 cos x +3 =0 and gamma ` is a root of the equation `1-sin2 x = cos x- sin x : 0 le alpha , beta, gamma , le pi//2 ` `sin alpha + sin beta + sin gamma ` can be equal to

A

`(14-3sqrt(2))/( 6 sqrt(2))`

B

`5//6`

C

`(3+4sqrt(2))/(6)`

D

`(1+sqrt(2))/(2) `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze each equation one by one and find the values of \( \sin \alpha \), \( \sin \beta \), and \( \sin \gamma \). ### Step 1: Solve for \( \alpha \) The first equation is: \[ (2 \sin x - \cos x)(1 + \cos x) = \sin^2 x \] We can rewrite \( \sin^2 x \) using the identity \( \sin^2 x = 1 - \cos^2 x \): \[ (2 \sin x - \cos x)(1 + \cos x) = 1 - \cos^2 x \] Expanding the left side: \[ (2 \sin x - \cos x)(1 + \cos x) = 2 \sin x + 2 \sin x \cos x - \cos x - \cos^2 x \] Setting the equation: \[ 2 \sin x + 2 \sin x \cos x - \cos x - \cos^2 x = 1 - \cos^2 x \] Rearranging gives: \[ 2 \sin x + 2 \sin x \cos x - \cos x = 1 \] Factoring out \( (1 + \cos x) \): \[ (1 + \cos x)(2 \sin x - 1) = 0 \] This gives us two cases: 1. \( 1 + \cos x = 0 \) → \( \cos x = -1 \) (not possible in \( [0, \frac{\pi}{2}] \)) 2. \( 2 \sin x - 1 = 0 \) → \( \sin x = \frac{1}{2} \) Thus, \( \alpha = \frac{\pi}{6} \) and: \[ \sin \alpha = \frac{1}{2} \] ### Step 2: Solve for \( \beta \) The second equation is: \[ 3 \cos^2 x - 10 \cos x + 3 = 0 \] Let \( y = \cos x \), then we have: \[ 3y^2 - 10y + 3 = 0 \] Using the quadratic formula: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{10 \pm \sqrt{(-10)^2 - 4 \cdot 3 \cdot 3}}{2 \cdot 3} \] \[ = \frac{10 \pm \sqrt{100 - 36}}{6} = \frac{10 \pm \sqrt{64}}{6} = \frac{10 \pm 8}{6} \] This gives: 1. \( y = \frac{18}{6} = 3 \) (not possible) 2. \( y = \frac{2}{6} = \frac{1}{3} \) Thus, \( \cos \beta = \frac{1}{3} \). Now, we find \( \sin \beta \): \[ \sin^2 \beta + \cos^2 \beta = 1 \implies \sin^2 \beta = 1 - \left(\frac{1}{3}\right)^2 = 1 - \frac{1}{9} = \frac{8}{9} \] \[ \sin \beta = \sqrt{\frac{8}{9}} = \frac{2\sqrt{2}}{3} \] ### Step 3: Solve for \( \gamma \) The third equation is: \[ 1 - \sin 2x = \cos x - \sin x \] Using the identity \( \sin 2x = 2 \sin x \cos x \): \[ 1 - 2 \sin x \cos x = \cos x - \sin x \] Rearranging gives: \[ 2 \sin x \cos x + \sin x - \cos x + 1 = 0 \] Factoring out \( \sin x \): \[ \sin x (2 \cos x + 1) - \cos x + 1 = 0 \] Setting \( \sin x = 0 \) gives \( \gamma = 0 \): \[ \sin \gamma = 0 \] ### Step 4: Find the sum \( \sin \alpha + \sin \beta + \sin \gamma \) Now we can find: \[ \sin \alpha + \sin \beta + \sin \gamma = \frac{1}{2} + \frac{2\sqrt{2}}{3} + 0 \] Finding a common denominator (which is 6): \[ = \frac{3}{6} + \frac{4\sqrt{2}}{6} = \frac{3 + 4\sqrt{2}}{6} \] ### Final Answer Thus, the value of \( \sin \alpha + \sin \beta + \sin \gamma \) is: \[ \frac{3 + 4\sqrt{2}}{6} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|11 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|6 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|25 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Three Dimensional Coordinate System Exercise 12 : Question Asked in Previous Years Exam|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

alpha is a root of equation ( 2 sin x - cos x ) (1+ cos x)=sin^2 x , beta is a root of the equation 3 cos 2x - 10 cos x +3 =0 and gamma is a root of the equation 1-sin2 x = cos x- sin x : 0 le alpha , beta, gamma , le pi//2 sin (alpha - beta ) is equal to

alpha is a root of equation ( 2 sin x - cos x ) (1+ cos x)=sin^2 x , beta is a root of the equation 3 cos 2x - 10 cos x +3 =0 and gamma is a root of the equation 1-sin2 x = cos x- sin x : 0 le alpha , beta, gamma , le pi//2 cos alpha + cos beta + cos gamma can be equal to

Solve the equation sin x + cos x -2sqrt2 sin x cos x =0

Solve the equation ( sin x + cos x )^(1+ sin 2x )=2 , when -pi le x le pi .

Solve the equation 4 sin x cos x + 2 sin x + 2 cos x + 1 = 0

If alpha , beta, gamma are the roots of x^3+x^2-5x-1=0 then alpha+beta+gamma is equal to

Find all the number 'a' for which any root of the equation sin 3x =a sin x +(4-2|a|)sin^(2) x is a root of the equation sin 3x + cos 2 x =1+2 sinx cos 2x and any root of the latter equation is a root of the former .

Solve the equation for 0 le x le 2pi. sin x cos x =0

Number of solutions of the equation sin x + cos x-2sqrt(2) sin x cos x=0 for x in [0, pi] is

The solution of the equation "cos"^(2) x-2 "cos" x = 4 "sin" x - "sin" 2x (0 le x le pi) , is