Home
Class 12
MATHS
Statement I The system of linear equatio...

Statement I The system of linear equations
`x+(sin alpha )y+(cos alpha )z=0`
`x+(cos alpha ) y+(sin alpha )z=0`
`-x+(sin alpha )y-(cos alpha )z=0`
has a not trivial solution for only one value of ` alpha ` lying between ` 0 and pi`.
Statement II `|{:(sin x, cos x , cos x),( cos x , sin x , cos x) , (cos x , cos x , sin x ):}|=0`
has no solution in the interval `-pi//4 lt x lt pi//4 ` .

A

Statement I is true , Statement II is true , Statement II is a correct explanation for Statement I.

B

Statement I is true , Statement II is true , Statement II is not a correct explanation for Statement II.

C

Statement I is true , Statement II is false

D

Statement I is false , Statement II true .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to analyze both statements step by step. ### Statement I We have the system of linear equations: 1. \( x + (\sin \alpha) y + (\cos \alpha) z = 0 \) 2. \( x + (\cos \alpha) y + (\sin \alpha) z = 0 \) 3. \( -x + (\sin \alpha) y - (\cos \alpha) z = 0 \) We can represent this system in matrix form as: \[ \begin{bmatrix} 1 & \sin \alpha & \cos \alpha \\ 1 & \cos \alpha & \sin \alpha \\ -1 & \sin \alpha & -\cos \alpha \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \] For this system to have a non-trivial solution, the determinant of the coefficient matrix must be zero. ### Step 1: Calculate the Determinant The determinant of the matrix is given by: \[ D = \begin{vmatrix} 1 & \sin \alpha & \cos \alpha \\ 1 & \cos \alpha & \sin \alpha \\ -1 & \sin \alpha & -\cos \alpha \end{vmatrix} \] Calculating the determinant using the first row: \[ D = 1 \cdot \begin{vmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{vmatrix} - \sin \alpha \cdot \begin{vmatrix} 1 & \sin \alpha \\ -1 & -\cos \alpha \end{vmatrix} + \cos \alpha \cdot \begin{vmatrix} 1 & \cos \alpha \\ -1 & \sin \alpha \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. \( \begin{vmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{vmatrix} = -\cos^2 \alpha - \sin^2 \alpha = -1 \) 2. \( \begin{vmatrix} 1 & \sin \alpha \\ -1 & -\cos \alpha \end{vmatrix} = -\cos \alpha + \sin \alpha = \sin \alpha - \cos \alpha \) 3. \( \begin{vmatrix} 1 & \cos \alpha \\ -1 & \sin \alpha \end{vmatrix} = \sin \alpha + \cos \alpha \) Putting it all together: \[ D = 1(-1) - \sin \alpha (\sin \alpha - \cos \alpha) + \cos \alpha (\sin \alpha + \cos \alpha) \] \[ D = -1 - \sin^2 \alpha + \sin \alpha \cos \alpha + \cos \alpha \sin \alpha + \cos^2 \alpha \] \[ D = -1 + \cos^2 \alpha + \sin^2 \alpha + 2\sin \alpha \cos \alpha \] Using the identity \( \sin^2 \alpha + \cos^2 \alpha = 1 \): \[ D = -1 + 1 + 2\sin \alpha \cos \alpha = 2\sin \alpha \cos \alpha = \sin(2\alpha) \] ### Step 2: Set the Determinant to Zero For a non-trivial solution, we need: \[ \sin(2\alpha) = 0 \] This implies: \[ 2\alpha = n\pi \quad \text{for } n \in \mathbb{Z} \] Thus, \[ \alpha = \frac{n\pi}{2} \] ### Step 3: Determine Valid Values of \( \alpha \) We need \( \alpha \) to be in the interval \( (0, \pi) \): - For \( n = 1 \): \( \alpha = \frac{\pi}{2} \) (valid) - For \( n = 0 \): \( \alpha = 0 \) (not valid) - For \( n = 2 \): \( \alpha = \pi \) (not valid) Thus, the only value of \( \alpha \) that gives a non-trivial solution in the interval \( (0, \pi) \) is \( \frac{\pi}{2} \). ### Conclusion for Statement I Statement I is true. --- ### Statement II We need to analyze the determinant: \[ \begin{vmatrix} \sin x & \cos x & \cos x \\ \cos x & \sin x & \cos x \\ \cos x & \cos x & \sin x \end{vmatrix} = 0 \] ### Step 1: Calculate the Determinant Using similar steps as before: \[ D = \sin x \begin{vmatrix} \sin x & \cos x \\ \cos x & \sin x \end{vmatrix} - \cos x \begin{vmatrix} \cos x & \cos x \\ \cos x & \sin x \end{vmatrix} + \cos x \begin{vmatrix} \cos x & \sin x \\ \cos x & \cos x \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} \sin x & \cos x \\ \cos x & \sin x \end{vmatrix} = \sin^2 x - \cos^2 x = \sin^2 x - \cos^2 x \) 2. \( \begin{vmatrix} \cos x & \cos x \\ \cos x & \sin x \end{vmatrix} = \cos x (\sin x - \cos x) = \cos x (\sin x - \cos x) \) 3. \( \begin{vmatrix} \cos x & \sin x \\ \cos x & \cos x \end{vmatrix} = \cos^2 x - \sin x \cos x = \cos^2 x - \sin x \cos x \) Putting it all together: \[ D = \sin x (\sin^2 x - \cos^2 x) - \cos x (\cos x (\sin x - \cos x)) + \cos x (\cos^2 x - \sin x \cos x) \] ### Step 2: Set the Determinant to Zero We need to analyze when this determinant equals zero. However, we know from the problem statement that there are no solutions in the interval \( -\frac{\pi}{4} < x < \frac{\pi}{4} \). ### Conclusion for Statement II Statement II is also true. ### Final Conclusion Both statements are true, but Statement II does not correctly explain Statement I. ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Matching Type Questions)|2 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|23 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|11 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Three Dimensional Coordinate System Exercise 12 : Question Asked in Previous Years Exam|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

(cos ^(3) alpha - cos 3 alpha )/( cos alpha ) + (sin ^(3)alpha + sin 3 alpha )/( sin alpha ) = 3.

Assertion : The system of linear equations x+(sinalpha)y+(cosalpha)z=0x+(cosalpha)y+(sinalpha)z=0x-(sinalpha)y-(cos\ alpha)z=0 has a non-trivial solution for only value of alpha lying the interval (0,\ pi) Reason: The equation in\ alpha cosalphas in alpha cosalphasinalpha cosalphasinalphac osalpha-sinalpha-cosalpha|=0 has only one solution lying in the interval (-pi/4,\ pi/4)

If (2sinalpha)/({1+cos alpha+sin alpha})=y, then ({1-cos alpha+sin alpha})/(1+sin alpha)=

If x sin alpha = y cos alpha, prove that : x/(sec 2alpha) + y/(cosec 2 alpha) = x

The number of values of alpha in [-10pi, 10pi] for which the equations (sin alpha)x-(cos alpha)y+3z=0, (cos alpha)x+(sin alpha)y-2z=0 and 2x+3y+(cos alpha)z=0 have nontrivial solution is

Let lambda and alpha be real. Then the numbers of intergral values lambda for which the system of linear equations lambdax +(sin alpha) y+ (cos alpha) z=0 x + (cos alpha) y+ (sin alpha) z=0 -x+(sin alpha) y -(cos alpha) z=0 has non-trivial solutions is

Locus of the point of intersection of lines x cosalpha + y sin alpha = a and x sin alpha - y cos alpha =b (alpha in R ) is

If 0 lt theta lt pi and the system of equations (sin theta) x + y + z = 0 x + (cos theta) y + z = 0 (sin theta) x + (cos theta) y + z = 0 has a non-trivial solution, then theta =

Evaluate : |{:( 0, sin alpha , - cos alpha ), ( - sin alpha , 0 , sin beta) , (cos alpha , -sin beta , 0):}|

A=[(cos alpha,-sin alpha),(sin alpha,cos alpha)] and A+A^(T)=I , find the value of alpha .