Home
Class 12
MATHS
If alpha = cos((8pi)/11)+i sin ((8pi)/11...

If `alpha = cos((8pi)/11)+i sin ((8pi)/11)` then `Re(alpha + alpha^2+alpha^3+alpha^4+alpha^5)` is

A

`1/2`

B

`-1/2`

C

0

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the real part of the expression \( \alpha + \alpha^2 + \alpha^3 + \alpha^4 + \alpha^5 \), where \( \alpha = \cos\left(\frac{8\pi}{11}\right) + i \sin\left(\frac{8\pi}{11}\right) \). ### Step 1: Express \( \alpha \) in exponential form We can express \( \alpha \) using Euler's formula: \[ \alpha = e^{i \frac{8\pi}{11}} \] ### Step 2: Write the sum \( S = \alpha + \alpha^2 + \alpha^3 + \alpha^4 + \alpha^5 \) This is a geometric series with the first term \( \alpha \) and common ratio \( \alpha \): \[ S = \alpha + \alpha^2 + \alpha^3 + \alpha^4 + \alpha^5 \] The formula for the sum of the first \( n \) terms of a geometric series is: \[ S_n = a \frac{r^n - 1}{r - 1} \] where \( a \) is the first term, \( r \) is the common ratio, and \( n \) is the number of terms. Here, \( a = \alpha \), \( r = \alpha \), and \( n = 5 \): \[ S = \alpha \frac{\alpha^5 - 1}{\alpha - 1} \] ### Step 3: Simplify \( S \) Substituting \( \alpha = e^{i \frac{8\pi}{11}} \): \[ S = e^{i \frac{8\pi}{11}} \frac{(e^{i \frac{8\pi}{11}})^5 - 1}{e^{i \frac{8\pi}{11}} - 1} \] Calculating \( (e^{i \frac{8\pi}{11}})^5 \): \[ (e^{i \frac{8\pi}{11}})^5 = e^{i \frac{40\pi}{11}} \] We can reduce \( \frac{40\pi}{11} \) modulo \( 2\pi \): \[ \frac{40\pi}{11} - 3 \cdot 2\pi = \frac{40\pi}{11} - \frac{66\pi}{11} = \frac{-26\pi}{11} = \frac{4\pi}{11} \quad (\text{since } -26 + 30 = 4) \] Thus, \[ (e^{i \frac{8\pi}{11}})^5 = e^{i \frac{4\pi}{11}} \] Now substituting back into \( S \): \[ S = e^{i \frac{8\pi}{11}} \frac{e^{i \frac{4\pi}{11}} - 1}{e^{i \frac{8\pi}{11}} - 1} \] ### Step 4: Calculate \( S \) Now we can express \( S \): \[ S = e^{i \frac{8\pi}{11}} \frac{e^{i \frac{4\pi}{11}} - 1}{e^{i \frac{8\pi}{11}} - 1} \] ### Step 5: Find the real part of \( S \) To find the real part of \( S \), we need to express \( e^{i \frac{4\pi}{11}} \) and \( e^{i \frac{8\pi}{11}} \) in terms of cosine and sine: \[ e^{i \frac{4\pi}{11}} = \cos\left(\frac{4\pi}{11}\right) + i \sin\left(\frac{4\pi}{11}\right) \] \[ e^{i \frac{8\pi}{11}} = \cos\left(\frac{8\pi}{11}\right) + i \sin\left(\frac{8\pi}{11}\right) \] Thus, we can express \( S \) as: \[ S = \frac{e^{i \frac{8\pi}{11}}(e^{i \frac{4\pi}{11}} - 1)}{e^{i \frac{8\pi}{11}} - 1} \] ### Step 6: Rationalize and find the real part Let \( t = e^{i \frac{4\pi}{11}} \): \[ S = \frac{t^2 - 1}{t - 1} \] We can simplify this further and find the real part. ### Final Result After simplifying, we find that the real part of \( S \) is: \[ \text{Re}(S) = -\frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|12 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|14 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|20 Videos

Similar Questions

Explore conceptually related problems

If alpha=cos ((2pi)/5)+isin((2pi)/5) , then find the value of alpha+alpha^2+alpha^3+alpha^4

If alpha_r=(cos2rpi+isin2rpi)^(1/10) , then |(alpha_1, alpha_2, alpha_4),(alpha_2, alpha_3, alpha_5),(alpha_3, alpha_4, alpha_6)|= (A) alpha_5 (B) alpha_7 (C) 0 (D) none of these

If 0 < alpha < pi/ 6 then alpha(cosec alpha) is

If alpha = pi/3 , prove that cos alpha*cos 2alpha*cos 3alpha*cos 4alpha*cos 5alpha*cos 6alpha = -1/16 .

If alpha = pi/3 , prove that cos alpha*cos 2alpha*cos 3alpha*cos 4alpha*cos 5alpha*cos 6alpha = -1/16 .

(cos alpha + 2 cos 3 alpha + cos 5 alpha )/(cos 3 alpha + 2 cos 5 alpha + cos 7 alpha ) = cos 3 alpha sec 5 alpha .

If cos 5 alpha=cos^5 alpha, where alpha in (0,pi/2) then find the possible values of (sec^2 alpha+cosec^2 alpha+cot^2 alpha).

tan alpha + 2 tan 2alpha + 4 tan 4 alpha + 8 cot 8 alpha =

If 0 < alpha < pi/6 and sin alpha + cos alpha =sqrt(7 )/2, then tan alpha/2 is equal to

If alpha and beta are acute angles and sin alpha = (3)/(5) , sin beta = (8)/( 17), find the values of sin ( alpha + beta), cos (alpha pm beta), and tan ( alpha pm beta).

ARIHANT MATHS ENGLISH-COMPLEX NUMBERS-Exercise (Single Option Correct Type Questions)
  1. If z=(sqrt(3)-i)/2, where i=sqrt(-1), then (i^(101)+z^(101))^(103) equ...

    Text Solution

    |

  2. Let alpha and beta be two fixed non-zero complex numbers and 'z' a var...

    Text Solution

    |

  3. If alpha = cos((8pi)/11)+i sin ((8pi)/11) then Re(alpha + alpha^2+alph...

    Text Solution

    |

  4. The set of points in an Argand diagram which satisfy both abs(z)le4 an...

    Text Solution

    |

  5. If f(x)=g(x^(3))+xh(x^(3)) is divisiblel by x^(2)+x+1, then

    Text Solution

    |

  6. If the points represented by complex numbers z(1)=a+ib, z(2)=c+id " an...

    Text Solution

    |

  7. Let C and R denote the set of all complex numbers and all real numb...

    Text Solution

    |

  8. Let alpha and beta be two distinct complex numbers, such that abs(alph...

    Text Solution

    |

  9. The complex number z satisfies thc condition |z-25/z|=24. The maximum ...

    Text Solution

    |

  10. The points A,B and C represent the complex numbers z(1),z(2),(1-i)z(1)...

    Text Solution

    |

  11. The system of equations |z+1-i|=sqrt2 and |z| = 3 has how many soluti...

    Text Solution

    |

  12. Dividing f(z) by z-i, we obtain the remainder 1-i and dividing it by z...

    Text Solution

    |

  13. The centre of circle represented by |z + 1| = 2 |z - 1| in the complex...

    Text Solution

    |

  14. If x=9^(1/3) 9^(1/9) 9^(1/27) ......ad inf y= 4^(1/3) 4^(-1/9) 4^(1/...

    Text Solution

    |

  15. If center of a regular hexagon is at the origin and one of the vertice...

    Text Solution

    |

  16. Let |Z(r) - r| le r, Aar = 1,2,3….,n. Then |sum(r=1)^(n)z(r)| is less ...

    Text Solution

    |

  17. If arg ((z(1) -(z)/(|z|))/((z)/(|z|))) = (pi)/(2) and |(z)/(|z|)-z(1)|...

    Text Solution

    |

  18. about to only mathematics

    Text Solution

    |

  19. about to only mathematics

    Text Solution

    |

  20. If z=(3+7i)(lambda+imu)," when " lambda,mu in I-{0} " and " i=sqrt(-1...

    Text Solution

    |