Home
Class 12
MATHS
Let z(1),z(2) and z(3) be three non-zero...

Let `z_(1),z_(2)` and `z_(3)` be three non-zero complex numbers and `z_(1) ne z_(2)`. If `|{:(abs(z_(1)),abs(z_(2)),abs(z_(3))),(abs(z_(2)),abs(z_(3)),abs(z_(1))),(abs(z_(3)),abs(z_(1)),abs(z_(2))):}|=0`, prove that
(i) `z_(1),z_(2),z_(3)` lie on a circle with the centre at origin.
(ii)`arg(z_(3)/z_(2))=arg((z_(3)-z_(1))/(z_(2)-z_(1)))^(2)`.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|43 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Complex Number Exercise 8|2 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|12 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|20 Videos

Similar Questions

Explore conceptually related problems

Let z_(1) and z_(2) be any two non-zero complex numbers such that 3|z_(1)|=2|z_(2)|. "If "z=(3z_(1))/(2z_(2)) + (2z_(2))/(3z_(1)) , then

Let z_(1),z_(2) be two complex numbers such that |z_(1)+z_(2)|=|z_(1)|+|z_(2)| . Then,

If z_(1) and z_(2) are to complex numbers such that two |z_(1)|=|z_(2)|+|z_(1)-z_(2)| , then arg (z_(1))-"arg"(z_(2))

If z_(1),z_(2),z_(3),z_(4) are two pairs of conjugate complex numbers, then arg(z_(1)/z_(3)) + arg(z_(2)/z_(4)) is

If z_(1),z_(2) and z_(3) be unimodular complex numbers, then the maximum value of |z_(1)-z_(2)|^(2)+|z_(2)-z_(3)|^(2)+|z_(3)-z_(1)|^(2) , is

If z_(1) and z_(2) are two complex numbers such that |(z_(1)-z_(2))/(z_(1)+z_(2))|=1 , then

If complex numbers z_(1)z_(2) and z_(3) are such that |z_(1)| = |z_(2)| = |z_(3)| , then prove that arg((z_(2))/(z_(1))) = arg ((z_(2) - z_(3))/(z_(1) - z_(3)))^(2) .

Let z_(1),z_(2),z_(3),z_(4) are distinct complex numbers satisfying |z|=1 and 4z_(3) = 3(z_(1) + z_(2)) , then |z_(1) - z_(2)| is equal to

If the complex numbers z_(1),z_(2),z_(3) are in AP, then they lie on

Let z_(1) and z_(2) be two given complex numbers such that z_(1)/z_(2) + z_(2)/z_(1)=1 and |z_(1)| =3 , " then " |z_(1)-z_(2)|^(2) is equal to