Home
Class 12
MATHS
Let z(k)=cos((2kpi)/(10))+isin((2kpi)/(1...

Let `z_(k)=cos((2kpi)/(10))+isin((2kpi)/(10))`,k=1,2,…,9. Then match the column

A

`{:(, ,A,B,C,D),(,(a),1,2,4,3):}`

B

`{:(, ,A,B,C,D),(,(b),2,1,3,4):}`

C

`{:(, ,A,B,C,D),(,(b),1,2,3,4):}`

D

`{:(, ,A,B,C,D),(,(b),2,1,4,3):}`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|43 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|20 Videos

Similar Questions

Explore conceptually related problems

Let z_(k)=cos(2kpi)/10+isin(2kpi)/10,k=1,2,………..,9 . Then, 1/10{|1-z_(1)||1-z_(2)|……|1-z_(9)|} equals

Let omega be the complex number cos((2pi)/3)+isin((2pi)/3) . Then the number of distinct complex cos numbers z satisfying Delta=|(z+1,omega,omega^2),(omega,z+omega^2,1),(omega^2,1,z+omega)|=0 is

Let omega be the complex number cos((2pi)/3)+isin((2pi)/3) . Then the number of distinct complex cos numbers z satisfying Delta=|(z+1,omega,omega^2),(omega,z+omega^2,1),(omega^2,1,z+omega)|=0 is

Let omega be the complex number cos((2pi)/3)+isin((2pi)/3) . Then the number of distinct complex cos numbers z satisfying Delta=|(z+1,omega,omega^2),(omega,z+omega^2,1),(omega^2,1,z+omega)|=0 is

For any integer k , let alpha_k=cos((kpi)/7)+isin((kpi)/7),w h e r e i=sqrt(-1)dot Value of the expression (sum_(k=1)^(12)|alpha_(k+1)-alpha_k|)/(sum_(k=1)^3|alpha_(4k-1)-alpha_(4k-2)|) is

sum_(r=1)^(2002+(2k-1))cos((2rpi)/7)+isin((2rpi)/7)=0 then the non negative integtral values of k less than 10 may be

For the equation (1-ix)/(1+ix)=sin.(pi)/(7)-i cos.(pi)/(7) , if x=tan((kpi)/(28)) , then the value of k can be (where i^(2)=-1 )

The value of 1+sum_(k=0)^(14) {cos((2k+1)pi)/(15) - isin((2k+1)pi)/(15)} , is

If [(cos\ (2pi)/7,-sin\ (2pi)/7),(sin\ (2pi)/7,cos\ (2pi)/7)]^k=[(1,0),(0,1)], then the least positive integral value of k , is

Let P(k)=(1+cos(pi/(4k))) (1+cos(((2k-1)pi)/(4k))) (1+cos(((2k+1)pi)/(4k)))(1+cos(((4k-1)pi)/(4k)))dot Then Prove that (a) P(3)=1/(16) (b) P(4)=(2-sqrt(2))/(16) (c) P(5)=(3-sqrt(5))/(32) (d) P(6)(2-sqrt(3))/(16)