Home
Class 12
MATHS
Let {D1, D2, D3 ,Dn} be the set of third...

Let `{D_1, D_2, D_3 ,D_n}` be the set of third order determinant that can be made with the distinct non-zero real numbers `a_1, a_2, a_qdot` Then `sum_(i=1)^n D_i=1` b. `sum_(i=1)^n D_i=0` c. `D_i-D_j ,AAi ,j` d. none of these

A

`sum_(i=1)^(n)D_(i)=1`

B

`sum_(i=1)^(n)D_(i)=0`

C

`D_(i)=D_(j),foralli,j`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|13 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|10 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|7 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

If sum_(i=1)^10 sin^-1 x_i = 5pi then sum_(i=1)^10 x_i^2 = (A) 0 (B) 5 (C) 10 (D) none of these

If sum_(r=1)^n t_r= (n(n+1)(n+2))/3 then sum _(r=1)^oo 1/t_r= (A) -1 (B) 1 (C) 0 (D) none of these

If b_i=1-a_i ,n a=sum_(i=1)^n a_i ,n b=sum_(i=1)^n b_i ,t h e nsum_(i=1)^n a_i ,b_i+sum_(i=1)^n(a_i-a)^2= a b b. n a b c. (n+1)a b d. n a b

If n= 10, sum_(i=1)^(10) x_(i) = 60 and sum_(i=1)^(10) x_(i)^(2) = 1000 then find s.d.

If d is the determinant of a square matrix A of order n , then the determinant of its adjoint is d^n (b) d^(n-1) (c) d^(n+1) (d) d

If distances of (-1, 2, 3) from x, y, z axis are d_1,d_2, d_3 respectively and the distances from xy, yz, zx planes are d_4, d_5, d_6 then the value of sum_(i=1)^6 d_i , is ___

If Z is an idempotent matrix, then (I+Z)^n I+2^n Z b. I+(2^n-1)Z c. I-(2^n-1)Z d. none of these

Let a and b be two real numbers such that a > 1, b >1. If A=((a,0),(0,b)), then (lim)_(n->oo) A^-n is (a) unit matrix (b) null matrix (c) 2I (d) non of these

If A_1, A_2, …, A_n are n independent events, such that P(A_i)=(1)/(i+1), i=1, 2,…, n , then the probability that none of A_1, A_2, …, A_n occur, is

Find sum of sum_(r=1)^n r . C (2n,r) (a) n*2^(2n-1) (b) 2^(2n-1) (c) 2^(n-1)+1 (d) None of these