Home
Class 12
MATHS
Let Delta(x)=|(x+a,x+b,x+a-c),(x+b,x+c,x...

Let `Delta(x)=|(x+a,x+b,x+a-c),(x+b,x+c,x-1),(x+c,x+d,x-b+d)| and int_0^2 Delta(x)dx=-16,` where `a,b,c,d` are in A.P. then the common difference (i) `1` (ii)`2` (iii)`3` (iv)`4`

A

`+-1`

B

`+-2`

C

`+-3`

D

`+-4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant \( \Delta(x) \) and then use the given integral condition to find the common difference \( d \) of the arithmetic progression (A.P.) formed by \( a, b, c, d \). ### Step 1: Write the determinant \( \Delta(x) \) The determinant is given by: \[ \Delta(x) = \begin{vmatrix} x + a & x + b & x + a - c \\ x + b & x + c & x - 1 \\ x + c & x + d & x - b + d \end{vmatrix} \] ### Step 2: Apply row operations to simplify the determinant We will perform row operations to simplify the determinant. 1. **Row 2**: Replace it with \( \text{Row 2} - \text{Row 1} \). 2. **Row 3**: Replace it with \( \text{Row 3} - \text{Row 2} \). After performing these operations, we have: \[ \Delta(x) = \begin{vmatrix} x + a & x + b & x + a - c \\ b - a & c - b & -1 - (a - c) \\ (c - b) & (d - c) & (-b + d + 1) \end{vmatrix} \] ### Step 3: Further simplify the determinant Let’s denote the differences: - Let \( d = b - a \) - Let \( c - b = d \) - Let \( d - c = d \) Now we can rewrite the determinant as: \[ \Delta(x) = \begin{vmatrix} x + a & x + b & x + a - c \\ d & d & -1 - (a - c) \\ d & d & (-b + d + 1) \end{vmatrix} \] ### Step 4: Calculate the determinant Using properties of determinants: \[ \Delta(x) = (x + a) \begin{vmatrix} d & -1 - (a - c) \\ d & (-b + d + 1) \end{vmatrix} - (x + b) \begin{vmatrix} d & -1 - (a - c) \\ d & (-b + d + 1) \end{vmatrix} + (x + a - c) \begin{vmatrix} d & d \\ d & d \end{vmatrix} \] The last determinant is zero since the rows are identical. ### Step 5: Evaluate the integral Given that: \[ \int_0^2 \Delta(x) \, dx = -16 \] From the determinant, we found that \( \Delta(x) = -2d^2 \). Therefore: \[ \int_0^2 -2d^2 \, dx = -16 \] Calculating the integral: \[ -2d^2 \cdot (2 - 0) = -4d^2 = -16 \] Thus, we have: \[ 4d^2 = 16 \implies d^2 = 4 \implies d = \pm 2 \] ### Conclusion The common difference \( d \) can be either \( 2 \) or \( -2 \). Since we are asked for the positive common difference, the answer is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|11 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|21 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|10 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

Let Delta(y)=|{:(y+a,y+b,y+a-c),(y+b,y+c,y-1),(y+c,y+d,y-b+d):}| and, int_(0)^(2) Delta(y)dy=-16 , where a,b,c,d are in A.P., then the common difference of the A.P. is equal to

If Delta(x)=|{:(a,b,c),(6,4,3),(x,x^(2),x^(3)):}| then find int_(0)^(1) Delta (x) dx.

if a+b+c=0 then Delta=|{:(a-x,c,b),(c,b-x,a),(b,a,c-x):}|=0 is

Show that |[x+1,x+2,x+a], [x+2,x+3,x+b],[ x+3,x+4,x+c]|=0 where a ,\ b ,\ c are in A.P.

If (a+b x)/(a-b x)=(b+c x)/(b-c x)=(c+dx)/(c-dx)(x!=0), then show that a, b, c and d are in G.P.

If (a+b x)/(a-b x)=(b+c x)/(b-c x)=(c+dx)/(c-dx)(x!=0), then show that a, b, c and d are in G.P.

If the roots of the equation x^3-12 x^2+39 x-28=0 are in A.P. then common difference will be +-1 b. +-2 c. +-3 d. +-4

If a ,b ,c ,d are in A.P. and x , y , z are in G.P., then show that x^(b-c)doty^(c-a)dotz^(a-b)=1.

If a ,b ,c ,d are in A.P. and x , y , z are in G.P., then show that x^(b-c)doty^(c-a)dotz^(a-b)=1.

If (a+b x)/(a-b x)=(b+c x)/(b-c x)=(c+dx)/(c-dx)(x!=0) , then show that a ,\ b ,\ c\ a n d\ d are in G.P.

ARIHANT MATHS ENGLISH-DETERMINANTS -Exercise (Single Option Correct Type Questions)
  1. if alpha, beta , ne 0 " and " f(n) =alpha^(n)+beta^(n) " and " |{:(...

    Text Solution

    |

  2. Let Delta(x)=|(x+a,x+b,x+a-c),(x+b,x+c,x-1),(x+c,x+d,x-b+d)| and int0^...

    Text Solution

    |

  3. If Delta (x)=|{:(x,1+x^(2),x^(3)),(log(1+x^(2)),e^(x),sinx),(cosx,tanx...

    Text Solution

    |

  4. If a, b, c are sides of a triangle and |(a^2,b^2,c^2),((a+1)^2,(b+1...

    Text Solution

    |

  5. Find dy/dx if x^2+xy+y^2=100

    Text Solution

    |

  6. If |[a,b-c,c+b],[a+c,b,c-a],[a-b,a+b,c]|=0 , then the line a x+b y+c=0...

    Text Solution

    |

  7. If f(x)=a+b x+c x^2 and alpha,beta,gamma are the roots of the equation...

    Text Solution

    |

  8. when the determinant |{:(cos2x,,sin^(2)x,,cos4x),(sin^(2)x,,cos2x,,co...

    Text Solution

    |

  9. If [] denotes the greatest integer less than or equal to the real numb...

    Text Solution

    |

  10. The determinant |y^2-x y x^2a b c a ' b ' c '| is equal to |b x+a y c ...

    Text Solution

    |

  11. If A , B ,C are angles of a triangles, then the value of e^(2i A)e^(-i...

    Text Solution

    |

  12. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  13. If x,y and z are the integers in AP lying between 1 and 9 and x 51, ...

    Text Solution

    |

  14. if a(1)b(1)c(1), a(2)b(2)c(2)" and " a(3)b(3)c(3) are three-digit ev...

    Text Solution

    |

  15. Expand | (4,8),(6,7)|

    Text Solution

    |

  16. If x(1),x(2) "and" y(1),y(2) are the roots of the equations 3x^(2) ...

    Text Solution

    |

  17. If |{:(.^(9)C(4),.^(9)C(5),.^(10)C(r)),(.^(10)C(6 ),.^(10)C(7),.^(11)C...

    Text Solution

    |

  18. If f(x), h(x) are polynomials of degree 4 and |(f(x), g(x),h(x)),(a, b...

    Text Solution

    |

  19. If f(x) =|{:(cos (x+alpha),cos(x+beta),cos(x+gamma)),(sin (x+alpha),si...

    Text Solution

    |

  20. if |{:(1,,1,,1),(a,,b,,c),(a^(3),,b^(3),,c^(3)):}|= (a-b)(b-c)(c-a)(a+...

    Text Solution

    |