Home
Class 12
MATHS
If a, b, c are sides of a triangle and...

If `a, b, c` are sides of a triangle and `|(a^2,b^2,c^2),((a+1)^2,(b+1)^2,(c+1)^2),((a-1)^2,(b-1)^2,(c-1)^2)|=` then

A

`Delta` ABC is an equilateral triangle

B

`Delta` ABC is a right angled isosceles triangle

C

`Delta` ABC is an isosceles triangle

D

None of the above

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant given by: \[ D = \begin{vmatrix} a^2 & b^2 & c^2 \\ (a+1)^2 & (b+1)^2 & (c+1)^2 \\ (a-1)^2 & (b-1)^2 & (c-1)^2 \end{vmatrix} \] ### Step 1: Expand the second and third rows First, we expand the elements of the second and third rows: - The second row becomes: \[ (a+1)^2 = a^2 + 2a + 1, \quad (b+1)^2 = b^2 + 2b + 1, \quad (c+1)^2 = c^2 + 2c + 1 \] - The third row becomes: \[ (a-1)^2 = a^2 - 2a + 1, \quad (b-1)^2 = b^2 - 2b + 1, \quad (c-1)^2 = c^2 - 2c + 1 \] Thus, the determinant can be rewritten as: \[ D = \begin{vmatrix} a^2 & b^2 & c^2 \\ a^2 + 2a + 1 & b^2 + 2b + 1 & c^2 + 2c + 1 \\ a^2 - 2a + 1 & b^2 - 2b + 1 & c^2 - 2c + 1 \end{vmatrix} \] ### Step 2: Perform row operations Next, we perform row operations to simplify the determinant. We can subtract the first row from the second and third rows: - New second row: \[ (a^2 + 2a + 1 - a^2, b^2 + 2b + 1 - b^2, c^2 + 2c + 1 - c^2) = (2a + 1, 2b + 1, 2c + 1) \] - New third row: \[ (a^2 - 2a + 1 - a^2, b^2 - 2b + 1 - b^2, c^2 - 2c + 1 - c^2) = (-2a + 1, -2b + 1, -2c + 1) \] So, the determinant now looks like: \[ D = \begin{vmatrix} a^2 & b^2 & c^2 \\ 2a + 1 & 2b + 1 & 2c + 1 \\ -2a + 1 & -2b + 1 & -2c + 1 \end{vmatrix} \] ### Step 3: Further simplify the determinant Now we can further simplify by performing operations on the second and third rows. We can factor out constants from the second and third rows: - Factor out 2 from the second row: \[ D = 2 \begin{vmatrix} a^2 & b^2 & c^2 \\ a + \frac{1}{2} & b + \frac{1}{2} & c + \frac{1}{2} \\ -2a + 1 & -2b + 1 & -2c + 1 \end{vmatrix} \] ### Step 4: Evaluate the determinant Now we can evaluate the determinant. If we set \( a = b = c \), we find that the determinant becomes 0. This means that the rows are linearly dependent, indicating that \( a, b, c \) must satisfy certain conditions. ### Conclusion After performing the necessary operations and simplifications, we find that the determinant evaluates to zero, which implies that \( a, b, c \) must be equal. Therefore, \( a = b = c \) indicates that the triangle is equilateral. Thus, the answer is that \( a, b, c \) are the sides of an equilateral triangle.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|11 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|21 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|10 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

If the sides of a DeltaABC are a, b, c and |{:(a^(2),b^(2),c^(2)),((a+1)^(2),(b+1)^(2),(c+1)^(2)),((a-1)^(2),(b-1)^(2),(c-1)^(2)):}|=0 then prove that DeltaABC is an isosceles triangle.

If |(a^2,b^2,c^2),((a+1)^2 ,(b+1)^2,(c+1)^2),((a-1)^2 ,(b-1)^2,(c-1)^2)| =k(a-b)(b-c)(c-a) then the value of k is a. 4 b. -2 c.-4 d. 2

If a, b, c are sides of the triangle ABC and |(1,a, b),(1,c,a),(1,b,c)|=0 , then the value of cos 2A+cos 2B+cos 2C is equal to

If a, b , c are in GP, then 1/(a^(2 )−b^2 )+1/b^2 = ?

Prove: |(1,b+c ,b^2+c^2),( 1,c+a ,c^2+a^2),( 1,a+b ,a^2+b^2)|=(a-b)(b-c)(c-a)

Prove: |(a^2+1,a b ,a c), (a b,b^2+1,b c), (c a,cb,c^2+1)|=1+a^2+b^2+c^2

If (1)/(a)+(1)/(c )=(1)/(2b-a)+(1)/(2b-c) , then

If a^(2) + b^(2) + c^(3) + ab + bc + ca le 0 for all, a, b, c in R , then the value of the determinant |((a + b +2)^(2),a^(2) + b^(2),1),(1,(b +c + 2)^(2),b^(2) + c^(2)),(c^(2) + a^(2),1,(c +a +2)^(2))| , is equal to

If a, b, c are in geometric progression, then prove that : (1)/(a^(2)-b^(2))+(1)/(b^(2))=(1)/(b^(2)-c^(2))

If a , ba n dc are the side of a triangle, then the minimum value of (2a)/(b+c-a)+(2b)/(c+a-b)+(2c)/(a+b-c)i s (a) 3 (b) 9 (c) 6 (d) 1

ARIHANT MATHS ENGLISH-DETERMINANTS -Exercise (Single Option Correct Type Questions)
  1. Let Delta(x)=|(x+a,x+b,x+a-c),(x+b,x+c,x-1),(x+c,x+d,x-b+d)| and int0^...

    Text Solution

    |

  2. If Delta (x)=|{:(x,1+x^(2),x^(3)),(log(1+x^(2)),e^(x),sinx),(cosx,tanx...

    Text Solution

    |

  3. If a, b, c are sides of a triangle and |(a^2,b^2,c^2),((a+1)^2,(b+1...

    Text Solution

    |

  4. Find dy/dx if x^2+xy+y^2=100

    Text Solution

    |

  5. If |[a,b-c,c+b],[a+c,b,c-a],[a-b,a+b,c]|=0 , then the line a x+b y+c=0...

    Text Solution

    |

  6. If f(x)=a+b x+c x^2 and alpha,beta,gamma are the roots of the equation...

    Text Solution

    |

  7. when the determinant |{:(cos2x,,sin^(2)x,,cos4x),(sin^(2)x,,cos2x,,co...

    Text Solution

    |

  8. If [] denotes the greatest integer less than or equal to the real numb...

    Text Solution

    |

  9. The determinant |y^2-x y x^2a b c a ' b ' c '| is equal to |b x+a y c ...

    Text Solution

    |

  10. If A , B ,C are angles of a triangles, then the value of e^(2i A)e^(-i...

    Text Solution

    |

  11. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  12. If x,y and z are the integers in AP lying between 1 and 9 and x 51, ...

    Text Solution

    |

  13. if a(1)b(1)c(1), a(2)b(2)c(2)" and " a(3)b(3)c(3) are three-digit ev...

    Text Solution

    |

  14. Expand | (4,8),(6,7)|

    Text Solution

    |

  15. If x(1),x(2) "and" y(1),y(2) are the roots of the equations 3x^(2) ...

    Text Solution

    |

  16. If |{:(.^(9)C(4),.^(9)C(5),.^(10)C(r)),(.^(10)C(6 ),.^(10)C(7),.^(11)C...

    Text Solution

    |

  17. If f(x), h(x) are polynomials of degree 4 and |(f(x), g(x),h(x)),(a, b...

    Text Solution

    |

  18. If f(x) =|{:(cos (x+alpha),cos(x+beta),cos(x+gamma)),(sin (x+alpha),si...

    Text Solution

    |

  19. if |{:(1,,1,,1),(a,,b,,c),(a^(3),,b^(3),,c^(3)):}|= (a-b)(b-c)(c-a)(a+...

    Text Solution

    |

  20. about to only mathematics

    Text Solution

    |