Home
Class 12
MATHS
If x,y and z are the integers in AP ly...

If x,y and z are the integers in AP lying between 1 and 9 and x 51, y 41 and z 31 are three digits number the value of `|{:(5,4,3),(x51,y41,z31),(x,y,z):}|` is

A

x+y+z

B

x-y+z

C

0

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the determinant \(|{:(5,4,3),(x51,y41,z31),(x,y,z):}|\) where \(x\), \(y\), and \(z\) are integers in arithmetic progression (AP) between 1 and 9. ### Step-by-Step Solution: 1. **Understanding the Arithmetic Progression**: Since \(x\), \(y\), and \(z\) are in AP, we have: \[ y = \frac{x + z}{2} \] This implies: \[ 2y = x + z \] 2. **Expressing the Three-Digit Numbers**: The three-digit numbers can be expressed as: - \(x51 = 100x + 50 + 1 = 100x + 51\) - \(y41 = 100y + 40 + 1 = 100y + 41\) - \(z31 = 100z + 30 + 1 = 100z + 31\) 3. **Setting Up the Determinant**: The determinant can be written as: \[ D = \begin{vmatrix} 5 & 4 & 3 \\ 100x + 51 & 100y + 41 & 100z + 31 \\ x & y & z \end{vmatrix} \] 4. **Row Operations**: We can simplify the determinant using row operations. We will perform the operation: \[ R_2 \rightarrow R_2 - 100R_3 - 10R_1 \] This gives us: - First row remains \( (5, 4, 3) \) - Second row becomes: \[ (100x + 51 - 100x - 50, 100y + 41 - 100y - 40, 100z + 31 - 100z - 30) = (1, 1, 1) \] - Third row remains \( (x, y, z) \) Thus, the determinant simplifies to: \[ D = \begin{vmatrix} 5 & 4 & 3 \\ 1 & 1 & 1 \\ x & y & z \end{vmatrix} \] 5. **Calculating the Determinant**: Now we can compute the determinant: \[ D = 5 \begin{vmatrix} 1 & 1 \\ y & z \end{vmatrix} - 4 \begin{vmatrix} 1 & 1 \\ x & z \end{vmatrix} + 3 \begin{vmatrix} 1 & 1 \\ x & y \end{vmatrix} \] Calculating each of these 2x2 determinants: - \( \begin{vmatrix} 1 & 1 \\ y & z \end{vmatrix} = z - y \) - \( \begin{vmatrix} 1 & 1 \\ x & z \end{vmatrix} = z - x \) - \( \begin{vmatrix} 1 & 1 \\ x & y \end{vmatrix} = y - x \) Therefore, \[ D = 5(z - y) - 4(z - x) + 3(y - x) \] Simplifying this: \[ D = 5z - 5y - 4z + 4x + 3y - 3x = z - 2y + x \] 6. **Substituting the AP Condition**: From the AP condition, we know \(x + z = 2y\). Thus: \[ D = (x + z) - 2y = 2y - 2y = 0 \] ### Final Answer: The value of the determinant is \(0\).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|11 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|21 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|10 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

evaluate: |(a+x,y,z),(x,a+y,z),(x,y,a+z)|

Write the value of |(x+y,y+z,z+x),(z,x,y),(-3,-3,-3)|

If x,y and z are positive integers such that x < y < z and x + y + z = 6 , then what is the value of z?

If x, y, and z are consecutive integers, is x+y+z divisible by 3?

If x, y, z are integers such that x >=0, y >=1, z >=2 and x + y + z = 15 , then the number of values of ordered triplets (x,y,z) are

evaluate: |(3x,-x+y,-x+z),(x-y,3y,z-y),(x-z,y-z,3z)|

Find the value of the "determinant" |{:(1,x,y+z),(1,y,z+x),(1,z,x+y):}|

If x,y,z be three numbers in G.P. such that 4 is the A.M. between x and y and 9 is the H.M. between y and z , then y is

If x,y,z are positive integers, then the value of the expression (x+y)(y+z)(z+x) is

ARIHANT MATHS ENGLISH-DETERMINANTS -Exercise (Single Option Correct Type Questions)
  1. If a, b, c are sides of a triangle and |(a^2,b^2,c^2),((a+1)^2,(b+1...

    Text Solution

    |

  2. Find dy/dx if x^2+xy+y^2=100

    Text Solution

    |

  3. If |[a,b-c,c+b],[a+c,b,c-a],[a-b,a+b,c]|=0 , then the line a x+b y+c=0...

    Text Solution

    |

  4. If f(x)=a+b x+c x^2 and alpha,beta,gamma are the roots of the equation...

    Text Solution

    |

  5. when the determinant |{:(cos2x,,sin^(2)x,,cos4x),(sin^(2)x,,cos2x,,co...

    Text Solution

    |

  6. If [] denotes the greatest integer less than or equal to the real numb...

    Text Solution

    |

  7. The determinant |y^2-x y x^2a b c a ' b ' c '| is equal to |b x+a y c ...

    Text Solution

    |

  8. If A , B ,C are angles of a triangles, then the value of e^(2i A)e^(-i...

    Text Solution

    |

  9. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  10. If x,y and z are the integers in AP lying between 1 and 9 and x 51, ...

    Text Solution

    |

  11. if a(1)b(1)c(1), a(2)b(2)c(2)" and " a(3)b(3)c(3) are three-digit ev...

    Text Solution

    |

  12. Expand | (4,8),(6,7)|

    Text Solution

    |

  13. If x(1),x(2) "and" y(1),y(2) are the roots of the equations 3x^(2) ...

    Text Solution

    |

  14. If |{:(.^(9)C(4),.^(9)C(5),.^(10)C(r)),(.^(10)C(6 ),.^(10)C(7),.^(11)C...

    Text Solution

    |

  15. If f(x), h(x) are polynomials of degree 4 and |(f(x), g(x),h(x)),(a, b...

    Text Solution

    |

  16. If f(x) =|{:(cos (x+alpha),cos(x+beta),cos(x+gamma)),(sin (x+alpha),si...

    Text Solution

    |

  17. if |{:(1,,1,,1),(a,,b,,c),(a^(3),,b^(3),,c^(3)):}|= (a-b)(b-c)(c-a)(a+...

    Text Solution

    |

  18. about to only mathematics

    Text Solution

    |

  19. If a , b , c are non-zero real numbers and if the system of equations ...

    Text Solution

    |

  20. the set of equations lambdax-y+(cos theta) z=0,3x+y+2z=0 (cos theta...

    Text Solution

    |