Home
Class 12
MATHS
the set of equations lambdax-y+(cos the...

the set of equations `lambdax-y+(cos theta) z=0,3x+y+2z=0`
`(cos theta) x+y+2z=0` ,`0 le theta lt 2 pi` has non-trivial solution (s)

A

A. for no value of `lambda` and `theta`

B

B. for all value of `lambda`and `theta`

C

C. for all value of `lambda` and only two values of `theta`

D

D. for only one value of `lambda` and all values of `theta`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the conditions under which the given set of equations has non-trivial solutions, we will analyze the determinant of the coefficients of the variables \(x\), \(y\), and \(z\). The equations provided are: 1. \(\lambda x - y + \cos \theta z = 0\) 2. \(3x + y + 2z = 0\) 3. \(\cos \theta x + y + 2z = 0\) ### Step 1: Set up the coefficient matrix We can express the system of equations in matrix form as follows: \[ \begin{bmatrix} \lambda & -1 & \cos \theta \\ 3 & 1 & 2 \\ \cos \theta & 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \] ### Step 2: Calculate the determinant For the system to have non-trivial solutions, the determinant of the coefficient matrix must be zero: \[ D = \begin{vmatrix} \lambda & -1 & \cos \theta \\ 3 & 1 & 2 \\ \cos \theta & 1 & 2 \end{vmatrix} \] Calculating the determinant using cofactor expansion: \[ D = \lambda \begin{vmatrix} 1 & 2 \\ 1 & 2 \end{vmatrix} - (-1) \begin{vmatrix} 3 & 2 \\ \cos \theta & 2 \end{vmatrix} + \cos \theta \begin{vmatrix} 3 & 1 \\ \cos \theta & 1 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \(\begin{vmatrix} 1 & 2 \\ 1 & 2 \end{vmatrix} = 0\) 2. \(\begin{vmatrix} 3 & 2 \\ \cos \theta & 2 \end{vmatrix} = 3 \cdot 2 - 2 \cdot \cos \theta = 6 - 2\cos \theta\) 3. \(\begin{vmatrix} 3 & 1 \\ \cos \theta & 1 \end{vmatrix} = 3 \cdot 1 - 1 \cdot \cos \theta = 3 - \cos \theta\) Putting it all together: \[ D = \lambda \cdot 0 + (6 - 2\cos \theta) + \cos \theta(3 - \cos \theta) \] This simplifies to: \[ D = 6 - 2\cos \theta + 3\cos \theta - \cos^2 \theta \] \[ D = 6 + \cos \theta - \cos^2 \theta \] ### Step 3: Set the determinant equal to zero For non-trivial solutions, we set the determinant to zero: \[ 6 + \cos \theta - \cos^2 \theta = 0 \] Rearranging gives: \[ \cos^2 \theta - \cos \theta - 6 = 0 \] ### Step 4: Solve the quadratic equation Using the quadratic formula \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\): Here, \(a = 1\), \(b = -1\), and \(c = -6\): \[ \cos \theta = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 1 \cdot (-6)}}{2 \cdot 1} \] \[ \cos \theta = \frac{1 \pm \sqrt{1 + 24}}{2} \] \[ \cos \theta = \frac{1 \pm 5}{2} \] Calculating the two potential solutions: 1. \(\cos \theta = \frac{6}{2} = 3\) (not possible since \(\cos \theta\) must be between -1 and 1) 2. \(\cos \theta = \frac{-4}{2} = -2\) (also not possible) ### Conclusion Since both potential values for \(\cos \theta\) are outside the range of the cosine function, there are no values of \(\lambda\) and \(\theta\) that satisfy the condition for non-trivial solutions. Thus, the final answer is that there are no values of \(\lambda\) and \(\theta\) for which the system has non-trivial solutions.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|11 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|21 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|10 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

If 0 lt theta lt pi and the system of equations (sin theta) x + y + z = 0 x + (cos theta) y + z = 0 (sin theta) x + (cos theta) y + z = 0 has a non-trivial solution, then theta =

If 0lt=thetalt=pi and the system of equations x=(sin theta)y+(cos theta)z y=z+(cos theta) x z=(sin theta) x+y has a non-trivial solution then (8theta)/(pi) is equal to

The system of equations x - y cos theta + z cos 2theta =0 -xcostheta+y-zcostheta=0 x cos 2theta-ycostheta + z=0 has non-trivial solution for theta equals

Number of values of theta lying I [0,100 pi ] for which the system of equations (sin 3 theta ) x-y+z=0, (cos 2 theta ) x+4y +3z=0, 2x+ 7y+7z =0 has non-trivial solution is "____"

the value of theta for which the system of equations (sin 3theta)x-2y+3z=0, (cos 2theta)x+8y-7z=0 and 2x+14y-11z=0 has a non - trivial solution, is (here, n in Z )

Solve cos theta * cos 2 theta * cos 3 theta = (1)/( 4), 0 le theta le pi

The number of integral values of a for which the system of linear equations x sin theta -2 y cos theta -az=0 , x+2y+z=0,-x+y+z=0 may have non-trivial solutions, then

The number of values of alpha in [-10pi, 10pi] for which the equations (sin alpha)x-(cos alpha)y+3z=0, (cos alpha)x+(sin alpha)y-2z=0 and 2x+3y+(cos alpha)z=0 have nontrivial solution is

Consider the system linear equations in x ,y ,a n dz given by (sin3theta)x-y+z=0,(cos2theta)x+4y+3z=0,2x+7y+7z=0. the value of theta for which the system has a non-trivial solution : (A) theta = npi/2 (B) theta = (2n+1)pi/6 (C) theta = npi or npi + (-1)^n pi/6 (D) none of these

Consider the system of equations : x sintheta-2ycostheta-az=0 , x+2y+z=0 , -x+y+z=0 , theta in R

ARIHANT MATHS ENGLISH-DETERMINANTS -Exercise (Single Option Correct Type Questions)
  1. If a, b, c are sides of a triangle and |(a^2,b^2,c^2),((a+1)^2,(b+1...

    Text Solution

    |

  2. Find dy/dx if x^2+xy+y^2=100

    Text Solution

    |

  3. If |[a,b-c,c+b],[a+c,b,c-a],[a-b,a+b,c]|=0 , then the line a x+b y+c=0...

    Text Solution

    |

  4. If f(x)=a+b x+c x^2 and alpha,beta,gamma are the roots of the equation...

    Text Solution

    |

  5. when the determinant |{:(cos2x,,sin^(2)x,,cos4x),(sin^(2)x,,cos2x,,co...

    Text Solution

    |

  6. If [] denotes the greatest integer less than or equal to the real numb...

    Text Solution

    |

  7. The determinant |y^2-x y x^2a b c a ' b ' c '| is equal to |b x+a y c ...

    Text Solution

    |

  8. If A , B ,C are angles of a triangles, then the value of e^(2i A)e^(-i...

    Text Solution

    |

  9. If |[ x^n ,x^(n+2) ,x^(2n)],[1 ,x^a , a ],[x^(n+5),x^(a+6),x^(2n+5)]...

    Text Solution

    |

  10. If x,y and z are the integers in AP lying between 1 and 9 and x 51, ...

    Text Solution

    |

  11. if a(1)b(1)c(1), a(2)b(2)c(2)" and " a(3)b(3)c(3) are three-digit ev...

    Text Solution

    |

  12. Expand | (4,8),(6,7)|

    Text Solution

    |

  13. If x(1),x(2) "and" y(1),y(2) are the roots of the equations 3x^(2) ...

    Text Solution

    |

  14. If |{:(.^(9)C(4),.^(9)C(5),.^(10)C(r)),(.^(10)C(6 ),.^(10)C(7),.^(11)C...

    Text Solution

    |

  15. If f(x), h(x) are polynomials of degree 4 and |(f(x), g(x),h(x)),(a, b...

    Text Solution

    |

  16. If f(x) =|{:(cos (x+alpha),cos(x+beta),cos(x+gamma)),(sin (x+alpha),si...

    Text Solution

    |

  17. if |{:(1,,1,,1),(a,,b,,c),(a^(3),,b^(3),,c^(3)):}|= (a-b)(b-c)(c-a)(a+...

    Text Solution

    |

  18. about to only mathematics

    Text Solution

    |

  19. If a , b , c are non-zero real numbers and if the system of equations ...

    Text Solution

    |

  20. the set of equations lambdax-y+(cos theta) z=0,3x+y+2z=0 (cos theta...

    Text Solution

    |