Home
Class 12
MATHS
Let alpha,beta,gamma be the roots of x^(...

Let `alpha,beta,gamma` be the roots of `x^(3)+2x^(2)-x-3=0`. If the absolute value of the expression `(alpha-1)/(alpha+2)+(beta-1)/(beta+2)+(gamma-1)/(gamma+2)` can be expressed as `(m)/(n)` where `m` and `n` are co-prime the value of `|{:(m,n^(2)),(m-n,m+n):}|` is

A

17

B

27

C

37

D

47

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \frac{\alpha - 1}{\alpha + 2} + \frac{\beta - 1}{\beta + 2} + \frac{\gamma - 1}{\gamma + 2} \] where \(\alpha, \beta, \gamma\) are the roots of the polynomial \(x^3 + 2x^2 - x - 3 = 0\). ### Step 1: Identify the coefficients and use Vieta's formulas From the polynomial \(x^3 + 2x^2 - x - 3 = 0\), we can identify: - \(a = 1\) - \(b = 2\) - \(c = -1\) - \(d = -3\) Using Vieta's formulas: 1. \(\alpha + \beta + \gamma = -\frac{b}{a} = -2\) 2. \(\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a} = -1\) 3. \(\alpha\beta\gamma = -\frac{d}{a} = 3\) ### Step 2: Simplify the expression The expression can be rewritten as: \[ \frac{\alpha - 1}{\alpha + 2} = 1 - \frac{3}{\alpha + 2} \] Thus, we can express the entire sum as: \[ \left(1 - \frac{3}{\alpha + 2}\right) + \left(1 - \frac{3}{\beta + 2}\right) + \left(1 - \frac{3}{\gamma + 2}\right) \] This simplifies to: \[ 3 - 3\left(\frac{1}{\alpha + 2} + \frac{1}{\beta + 2} + \frac{1}{\gamma + 2}\right) \] ### Step 3: Find \(\frac{1}{\alpha + 2} + \frac{1}{\beta + 2} + \frac{1}{\gamma + 2}\) Using the identity for the sum of reciprocals: \[ \frac{1}{\alpha + 2} + \frac{1}{\beta + 2} + \frac{1}{\gamma + 2} = \frac{(\beta + 2)(\gamma + 2) + (\gamma + 2)(\alpha + 2) + (\alpha + 2)(\beta + 2)}{(\alpha + 2)(\beta + 2)(\gamma + 2)} \] Calculating the numerator: \[ (\beta + 2)(\gamma + 2) + (\gamma + 2)(\alpha + 2) + (\alpha + 2)(\beta + 2) = \beta\gamma + 2\beta + 2\gamma + 4 + \gamma\alpha + 2\gamma + 2\alpha + 4 + \alpha\beta + 2\alpha + 2\beta + 4 \] This simplifies to: \[ (\alpha\beta + \beta\gamma + \gamma\alpha) + 2(\alpha + \beta + \gamma) + 12 = -1 + 2(-2) + 12 = -1 - 4 + 12 = 7 \] Calculating the denominator: \[ (\alpha + 2)(\beta + 2)(\gamma + 2) = \alpha\beta\gamma + 2(\alpha\beta + \beta\gamma + \gamma\alpha) + 4(\alpha + \beta + \gamma) + 8 \] This simplifies to: \[ 3 + 2(-1) + 4(-2) + 8 = 3 - 2 - 8 + 8 = 1 \] Thus, we have: \[ \frac{1}{\alpha + 2} + \frac{1}{\beta + 2} + \frac{1}{\gamma + 2} = \frac{7}{1} = 7 \] ### Step 4: Substitute back into the expression Now substituting back: \[ 3 - 3 \cdot 7 = 3 - 21 = -18 \] ### Step 5: Find the absolute value The absolute value of the expression is: \[ |-18| = 18 \] ### Step 6: Express as \(\frac{m}{n}\) We can express \(18\) as \(\frac{18}{1}\), where \(m = 18\) and \(n = 1\). Since \(m\) and \(n\) are co-prime, we can proceed to calculate the determinant. ### Step 7: Calculate the determinant We need to find the value of the determinant: \[ \left| \begin{array}{cc} m & n^2 \\ m - n & m + n \end{array} \right| \] Substituting \(m = 18\) and \(n = 1\): \[ \left| \begin{array}{cc} 18 & 1 \\ 17 & 19 \end{array} \right| = (18)(19) - (1)(17) = 342 - 17 = 325 \] ### Final Answer Thus, the final value of the determinant is: \[ \boxed{325} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|10 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Determinants Exercise 5:|5 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|11 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

if alpha, beta, gamma are the roots of x^(3) + x^(2)+x + 9=0 , then find the equation whose roots are (alpha +1)/(alpha -1) , (beta+1)/(beta -1), (gamma+1)/(gamma -1)

If alpha , beta, gamma are the roots of x^3+x^2-5x-1=0 then alpha+beta+gamma is equal to

If alpha,beta,gamma are the roots of x^3-x^2-1=0 then the value of (1+alpha)/(1-alpha)+(1+beta)/(1-beta)+(1+gamma)/(1-gamma) is equal to (a) -5 b. -6 c. -7 d. -2

If alpha , beta , gamma are the roots of x^3 + 3x^2 -4x +2=0 then the equation whose roots are (1)/( alpha beta) ,(1)/( beta gamma) ,(1)/( gamma alpha) is

If alpha, beta and gamma are the roots of x^3 - x^2-1 = 0, then value of (1+ alpha)/(1-alpha) + (1+ beta) / (1 - beta) + (1 + gamma) / (1 - gamma) is

If alpha,beta,gamma are the roots of x^(3)+2x^(2)-x-3=0 The value of |{:(alpha, beta ,gamma),(gamma,alpha ,beta),(beta,gamma ,alpha):}| is equal to

If alpha, beta, gamma are the roots of the equation x^3 + px^2 + qx + r = n then the value of (alpha - 1/(beta gamma)) (beta -1/(gamma alpha)) (gamma-1/(alpha beta)) is:

If alpha,beta and gamma are roots of equation x^(3)-3x^(2)+1=0 , then the value of ((alpha)/(1+alpha))^(3)+((beta)/(1+beta))^(3)+((gamma)/(1+gamma))^(3) is __________.

If alpha,beta,gamma are the roots of 4x^3-6x^2+7x+3=0 then find the value of alpha beta +beta gamma+gamma alpha .

If alpha, beta, gamma be the roots of x^(3) + a^(3) = 0 (a in R) , then the number of equation(s) whose roots are ((alpha)/(beta))^(2) and ((alpha)/(gamma))^(2) , is

ARIHANT MATHS ENGLISH-DETERMINANTS -Exercise (Passage Based Questions)
  1. Consider the system of equations x+y+z=5, x+2y+3z=9, x+3y+lambda z=m...

    Text Solution

    |

  2. Consider the system of equations x+y+z=5, x+2y+3z=9, x+3y+lambda z=m...

    Text Solution

    |

  3. If Delta=|{:(a(11),a(12),a(13)),(a(21),a(22),a(23)),(a(31),a(32),a(33)...

    Text Solution

    |

  4. Find |A| if A = | (5 , 2) , (6 , 3)|

    Text Solution

    |

  5. If Delta=|{:(a(11),a(12),a(13)),(a(21),a(22),a(23)),(a(31),a(32),a(33)...

    Text Solution

    |

  6. If alpha,beta,gamma are the roots of x^(3)+2x^(2)-x-3=0 The value of ...

    Text Solution

    |

  7. Let alpha,beta,gamma be the roots of x^(3)+2x^(2)-x-3=0. If the abso...

    Text Solution

    |

  8. If alpha,beta,gamma are the roots of x^(3)+2x^(2)-x-3=0. If a = al...

    Text Solution

    |

  9. Suppose f(x) is a function satisfying the folowing conditions: (i)f(...

    Text Solution

    |

  10. Suppose f(x) is a function satisfying the folowing conditions: (i)f(...

    Text Solution

    |

  11. Suppose f(x) is a function satisfying the folowing conditions: (i)f(...

    Text Solution

    |

  12. |{:(x,e^(x-1),(x-1)^(3)),(x-lnx,cos(x-1),(x-1)^(2)),(tanx,sin^(2)x,cos...

    Text Solution

    |

  13. Find |A| if A = |(4x, 3x), (5x, 6x)|

    Text Solution

    |

  14. Expand |(8x, 3), (2, 2)|

    Text Solution

    |

  15. Let Delta = |{:(-bc,,b^(2)+bc,,c^(2)+bc),(a^(2)+ac,,-ac,,c^(2)+ac),(a^...

    Text Solution

    |

  16. Expand | (7x, 4), (x, 1)|

    Text Solution

    |

  17. Expand |(3,2), (1,1)|

    Text Solution

    |

  18. If Deltan=|{:(a^(2)+n,ab,ac),(ab,b^(2)+n,bc),(ac,bc,c^(2)+n):}|,n in ...

    Text Solution

    |

  19. Find dy/dx if x^(3)-lambdax^(2)+11x-6=y

    Text Solution

    |

  20. If Deltan=|{:(a^(2)+n,ab,ac),(ab,b^(2)+n,bc),(ac,bc,c^(2)+n):}|,n in ...

    Text Solution

    |