Home
Class 12
MATHS
If Deltan=|{:(a^(2)+n,ab,ac),(ab,b^(2)+...

If `Delta_n=|{:(a^(2)+n,ab,ac),(ab,b^(2)+n,bc),(ac,bc,c^(2)+n):}|,n in N` and the equation
`x^(3)-lambdax^(2)+11x-6=0` has roots `a,b,c` where `a,b,c` are in AP.
The value of `sum_(r=1)^(30)((27Delta_(r)-Delta_(3r))/(27r^(2))) ` is

A

130

B

190

C

280

D

340

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will break down the solution into manageable parts. ### Step 1: Define the Determinant We start with the determinant defined as: \[ \Delta_n = \begin{vmatrix} a^2 + n & ab & ac \\ ab & b^2 + n & bc \\ ac & bc & c^2 + n \end{vmatrix} \] ### Step 2: Factor out common terms We can factor out \(a\), \(b\), and \(c\) from the first, second, and third rows respectively: \[ \Delta_n = abc \begin{vmatrix} 1 & \frac{ab}{a} & \frac{ac}{a} \\ \frac{ab}{b} & 1 & \frac{bc}{b} \\ \frac{ac}{c} & \frac{bc}{c} & 1 \end{vmatrix} \] This simplifies to: \[ \Delta_n = abc \begin{vmatrix} 1 & b & c \\ a & 1 & c \\ a & b & 1 \end{vmatrix} \] ### Step 3: Calculate the determinant We can calculate the determinant using the formula for a 3x3 matrix: \[ \Delta_n = abc \left( 1(1 \cdot 1 - b \cdot c) - b(a \cdot 1 - c \cdot a) + c(a \cdot b - 1 \cdot a) \right) \] This simplifies to: \[ \Delta_n = abc \left( 1 - bc - ab + ac + ac - ab \right) \] After simplification, we find: \[ \Delta_n = abc \left( a^2 + b^2 + c^2 + n \right) \] ### Step 4: Use the roots of the cubic equation Given the cubic equation: \[ x^3 - \lambda x^2 + 11x - 6 = 0 \] with roots \(a\), \(b\), and \(c\) in arithmetic progression (AP). Since \(a\), \(b\), and \(c\) are in AP, we can express them as: \[ b = a + d, \quad c = a + 2d \] From Vieta's formulas, we know: \[ a + b + c = \lambda, \quad ab + ac + bc = 11, \quad abc = 6 \] ### Step 5: Find \( \lambda \) Substituting \(b\) and \(c\) into \(a + b + c = \lambda\): \[ a + (a + d) + (a + 2d) = 3a + 3d = \lambda \implies \lambda = 3(a + d) \] ### Step 6: Substitute into the determinant Now substituting \(a\), \(b\), and \(c\) into \(\Delta_n\): \[ \Delta_n = n^3 + n^2(a^2 + b^2 + c^2) \] Using the expression for \(a^2 + b^2 + c^2\) in terms of \(d\): \[ a^2 + b^2 + c^2 = 3a^2 + 3d^2 = 3(a^2 + d^2) \] Thus: \[ \Delta_n = n^3 + 14n^2 \] ### Step 7: Calculate the summation We need to compute: \[ \sum_{r=1}^{30} \frac{27\Delta_r - \Delta_{3r}}{27r^2} \] Calculating \(\Delta_r\) and \(\Delta_{3r}\): \[ \Delta_r = r^3 + 14r^2, \quad \Delta_{3r} = (3r)^3 + 14(3r)^2 = 27r^3 + 126r^2 \] Substituting these into the summation: \[ 27\Delta_r - \Delta_{3r} = 27(r^3 + 14r^2) - (27r^3 + 126r^2) = 378r^2 \] Thus: \[ \sum_{r=1}^{30} \frac{378r^2}{27r^2} = \sum_{r=1}^{30} 14 = 14 \times 30 = 420 \] ### Final Answer The value of the summation is: \[ \boxed{420} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|10 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Determinants Exercise 5:|5 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|11 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

The value of sum_(r=0)^(3n-1)(-1)^r ^(6n)C_(2r+1)3^r is

The determinant Delta=|{:(,a^(2)(1+x),ab,ac),(,ab,b^(2)(1+x),(bc)),(,ac,bc,c^(2)(1+x)):}| is divisible by

The value of sum_(r=0)^(2n)(-1)^(r)*(""^(2n)C_(r))^(2) is equal to :

The value of sum_(r=0)^(n) r(n -r) (""^(n)C_(r))^(2) is equal to

Let Delta = |{:(-bc,,b^(2)+bc,,c^(2)+bc),(a^(2)+ac,,-ac,,c^(2)+ac),(a^(2)+ab,,b^(2)+ab,,-ab):}| and the equation px^(3) +qx^(2) +rx+s=0 has roots a,b,c where a,b,c in R^(+) " if " Delta =27 " and " a^(2) +b^(2)+c^(2) =3 then

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .

If n in N, then sum_(r=0)^(n) (-1)^(n) (""^(n)C_(r))/(""^(r+2)C_(r)) is equal to .

the determinant Delta=|[a^2+x, ab, ac] , [ab, b^2+x, bc] , [ac, bc, c^2+x]| is divisible by

If n in N such that is not a multiple of 3 and (1+x+x^(2))^(n) = sum_(r=0)^(2n) a_(r ). X^(r ) , then find the value of sum_(r=0)^(n) (-1)^(r ).a_(r).""^(n)C_(r ) .

If C_(r) be the coefficients of x^(r) in (1 + x)^(n) , then the value of sum_(r=0)^(n) (r + 1)^(2) C_(r) , is

ARIHANT MATHS ENGLISH-DETERMINANTS -Exercise (Passage Based Questions)
  1. Consider the system of equations x+y+z=5, x+2y+3z=9, x+3y+lambda z=m...

    Text Solution

    |

  2. Consider the system of equations x+y+z=5, x+2y+3z=9, x+3y+lambda z=m...

    Text Solution

    |

  3. If Delta=|{:(a(11),a(12),a(13)),(a(21),a(22),a(23)),(a(31),a(32),a(33)...

    Text Solution

    |

  4. Find |A| if A = | (5 , 2) , (6 , 3)|

    Text Solution

    |

  5. If Delta=|{:(a(11),a(12),a(13)),(a(21),a(22),a(23)),(a(31),a(32),a(33)...

    Text Solution

    |

  6. If alpha,beta,gamma are the roots of x^(3)+2x^(2)-x-3=0 The value of ...

    Text Solution

    |

  7. Let alpha,beta,gamma be the roots of x^(3)+2x^(2)-x-3=0. If the abso...

    Text Solution

    |

  8. If alpha,beta,gamma are the roots of x^(3)+2x^(2)-x-3=0. If a = al...

    Text Solution

    |

  9. Suppose f(x) is a function satisfying the folowing conditions: (i)f(...

    Text Solution

    |

  10. Suppose f(x) is a function satisfying the folowing conditions: (i)f(...

    Text Solution

    |

  11. Suppose f(x) is a function satisfying the folowing conditions: (i)f(...

    Text Solution

    |

  12. |{:(x,e^(x-1),(x-1)^(3)),(x-lnx,cos(x-1),(x-1)^(2)),(tanx,sin^(2)x,cos...

    Text Solution

    |

  13. Find |A| if A = |(4x, 3x), (5x, 6x)|

    Text Solution

    |

  14. Expand |(8x, 3), (2, 2)|

    Text Solution

    |

  15. Let Delta = |{:(-bc,,b^(2)+bc,,c^(2)+bc),(a^(2)+ac,,-ac,,c^(2)+ac),(a^...

    Text Solution

    |

  16. Expand | (7x, 4), (x, 1)|

    Text Solution

    |

  17. Expand |(3,2), (1,1)|

    Text Solution

    |

  18. If Deltan=|{:(a^(2)+n,ab,ac),(ab,b^(2)+n,bc),(ac,bc,c^(2)+n):}|,n in ...

    Text Solution

    |

  19. Find dy/dx if x^(3)-lambdax^(2)+11x-6=y

    Text Solution

    |

  20. If Deltan=|{:(a^(2)+n,ab,ac),(ab,b^(2)+n,bc),(ac,bc,c^(2)+n):}|,n in ...

    Text Solution

    |