Home
Class 12
MATHS
Find f'(x) if f(x) =log(cose^x)...

Find `f'(x) if f(x) =log(cose^x)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( f'(x) \) of the function \( f(x) = \log(\cos(e^x)) \), we will use the chain rule and the properties of logarithmic and trigonometric functions. Here’s the step-by-step solution: ### Step 1: Identify the function We have: \[ f(x) = \log(\cos(e^x)) \] ### Step 2: Apply the chain rule Using the chain rule, we differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx}[\log(\cos(e^x))] \] The derivative of \( \log(u) \) where \( u = \cos(e^x) \) is: \[ f'(x) = \frac{1}{\cos(e^x)} \cdot \frac{d}{dx}[\cos(e^x)] \] ### Step 3: Differentiate \( \cos(e^x) \) Now we need to differentiate \( \cos(e^x) \). Using the chain rule again: \[ \frac{d}{dx}[\cos(e^x)] = -\sin(e^x) \cdot \frac{d}{dx}[e^x] \] The derivative of \( e^x \) is \( e^x \), so: \[ \frac{d}{dx}[\cos(e^x)] = -\sin(e^x) \cdot e^x \] ### Step 4: Substitute back into the derivative Now substituting back into our expression for \( f'(x) \): \[ f'(x) = \frac{1}{\cos(e^x)} \cdot (-\sin(e^x) \cdot e^x) \] This simplifies to: \[ f'(x) = -\frac{e^x \sin(e^x)}{\cos(e^x)} \] ### Step 5: Simplify using trigonometric identity Using the identity \( \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} \): \[ f'(x) = -e^x \tan(e^x) \] ### Final Answer Thus, the derivative \( f'(x) \) is: \[ f'(x) = -e^x \tan(e^x) \] ---
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|17 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|10 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

find f '(x) if f(x)= log(logx)

Find the domain of f(x) = log (e^(x) - x) + (1)/(sqrt(5[x] - [x]^(2) - 6))

int (f'(x))/( f(x) log(f(x)))dx is equal to

Integrate the functions f(x) f(x)=x log(x)

Find the domain of definition of the following f(x) given by f(x)=log_4{(log_(5)log_3(18 x-x^2-77)}

if the function f(x) defined by f(x)= (log(1+a x)-"log"(1-b x))/x , if x!=0 and k if x=0 is continuous at x=0 , find k.

If the function f(x) defined by f(x)={(log(1+a x)-log(1-b x))/x ,\ \ \ if\ x!=0\ \ \ \ \ \ \ \ \ \ \ \ k ,\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ if\ x=0 is continuous at x=0 , find k .

If the function f(x) defined by f(x)= (log(1+3x)-"log"(1-2x))/x , x!=0 and k , x=0. Find k.

Find the domain f(x)=log_(100x)((2 log_(10) x+1)/-x)

Find domain of f(x) = log_5(log_4(log_3(log_2 x)))