Home
Class 12
MATHS
Expand | (cosx, -sinx),(sinx , cosx)|...

Expand `| (cosx, -sinx),(sinx , cosx)|`

Text Solution

AI Generated Solution

The correct Answer is:
To expand the determinant \( | ( \cos x, -\sin x ), ( \sin x, \cos x ) | \), we can follow these steps: ### Step 1: Write the determinant We start with the determinant: \[ \Delta = \begin{vmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{vmatrix} \] ### Step 2: Apply the determinant formula The formula for the determinant of a 2x2 matrix \( \begin{vmatrix} a & b \\ c & d \end{vmatrix} \) is given by \( ad - bc \). Here, we have: - \( a = \cos x \) - \( b = -\sin x \) - \( c = \sin x \) - \( d = \cos x \) So, we can calculate the determinant as follows: \[ \Delta = (\cos x)(\cos x) - (-\sin x)(\sin x) \] ### Step 3: Simplify the expression Now, we simplify the expression: \[ \Delta = \cos^2 x + \sin^2 x \] ### Step 4: Use the Pythagorean identity We know from the Pythagorean identity that: \[ \cos^2 x + \sin^2 x = 1 \] ### Final Result Thus, the value of the determinant is: \[ \Delta = 1 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|17 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Determinants Exercise 7:|3 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Determinants Exercise 5:|5 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

The number of distinct real roots of the equation |{:(cosx, sinx, sinx), (sinx, cosx, sinx), (sinx, sinx, cosx):}|=0 in the interval [-\ pi/4,pi/4] is- a. 3 b. \ 4 c. \ 2 d. 1

Find the inverse matrix of the matrix A=|{:(cosx,-sinx,0),(sinx,cosx,0),(0,0,1):}|

Show that, sin3x + cos3x = (cosx-sinx)(1+4sinx cosx)

A=|{:(cosx,-sinx),(sinx,cosx):}| , then show that (A^(-1))^(-1)=A.

If f(x) =|{:(sinx,cosx,sinx),(cosx,-sinx,cosx),(x,1,1):}| find the value of 2[f'(0)]+[f'(1)]^(2)

If A=[{:(cosx,sinx),(-sinx,cosx)] then find |A|

Evaluate: int(2cosx-sinx)/(2sinx+cosx)\ dx

(sinx-cosx)^2

If A=[(cosx,sinx),(-sinx,cosx)] and A.(adjA)=k[(1,0),(0,1)] then the value of k is

If A=[(cosx,sinx),(-sinx,cosx)] and A.(adjA)=k[(1,0),(0,1)] then the value of k is