Home
Class 12
MATHS
(i) Find maximum value of f(x)=|{:(1+...

(i) Find maximum value of
`f(x)=|{:(1+sin^(2)x,cos^(2)x,4sin2x),(sin^(2)x,1+cos^(2)x,4sin2x),(sin^(2)x,cos^(2)x,1+4sin2x):}|`.
(ii) Let A,B and C be the angles of triangle such that `Agt=Bgt=C.`
Find the minimum value of `Delta` where
`Delta=|{:(sin^(2)A,sinAcosA,cos^(2)A),(sin^(2) B,sinBcosB,cos^(2)B),(sin^(2)C,sinCcosC,cos^(2)C):}|`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we will break it down into two parts as per the question. ### Part (i): Find the maximum value of \[ f(x) = \left| \begin{array}{ccc} 1 + \sin^2 x & \cos^2 x & 4 \sin 2x \\ \sin^2 x & 1 + \cos^2 x & 4 \sin 2x \\ \sin^2 x & \cos^2 x & 1 + 4 \sin 2x \end{array} \right| \] #### Step 1: Apply Row Operations We will first apply row operations to simplify the determinant. We will perform the following operations: - Replace \( R_1 \) with \( R_1 - R_2 \) - Replace \( R_2 \) with \( R_2 - R_3 \) After performing these operations, the determinant becomes: \[ \left| \begin{array}{ccc} 1 + \sin^2 x - (1 + \cos^2 x) & \cos^2 x - \cos^2 x & 4 \sin 2x - 4 \sin 2x \\ \sin^2 x - \sin^2 x & 1 + \cos^2 x - (1 + 4 \sin 2x) & 4 \sin 2x - 4 \sin 2x \\ \sin^2 x & \cos^2 x & 1 + 4 \sin 2x \end{array} \right| \] This simplifies to: \[ \left| \begin{array}{ccc} \sin^2 x - \cos^2 x & 0 & 0 \\ 0 & \cos^2 x - 4 \sin 2x & 0 \\ \sin^2 x & \cos^2 x & 1 + 4 \sin 2x \end{array} \right| \] #### Step 2: Calculate the Determinant The determinant simplifies to: \[ \Delta = (1 + 4 \sin 2x) \cdot \left| \begin{array}{cc} \sin^2 x - \cos^2 x & 0 \\ 0 & \cos^2 x - 4 \sin 2x \end{array} \right| \] Calculating the 2x2 determinant gives: \[ \Delta = (1 + 4 \sin 2x) \cdot (\sin^2 x - \cos^2 x)(\cos^2 x - 4 \sin 2x) \] #### Step 3: Find Maximum Value To find the maximum value of \( f(x) \), we need to analyze the expression: \[ \Delta = (1 + 4 \sin 2x)(\sin^2 x - \cos^2 x)(\cos^2 x - 4 \sin 2x) \] Using trigonometric identities and calculus, we can find the maximum value of this expression. ### Part (ii): Find the minimum value of \[ \Delta = \left| \begin{array}{ccc} \sin^2 A & \sin A \cos A & \cos^2 A \\ \sin^2 B & \sin B \cos B & \cos^2 B \\ \sin^2 C & \sin C \cos C & \cos^2 C \end{array} \right| \] given that \( A > B > C \). #### Step 1: Apply Row Operations Similar to part (i), we can apply row operations to simplify the determinant. We will perform: - Replace \( R_1 \) with \( R_1 - R_2 \) - Replace \( R_2 \) with \( R_2 - R_3 \) This will yield a simpler determinant. #### Step 2: Calculate the Determinant After performing the operations, we will calculate the determinant of the resulting matrix. #### Step 3: Analyze the Expression To find the minimum value of \( \Delta \), we will analyze the resulting expression and apply any necessary inequalities or calculus techniques.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Determinants Exercise 7:|3 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|7 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

If the maximum and minimum values of the determinant |(1 + sin^(2)x,cos^(2) x,sin 2x),(sin^(2) x,1 + cos^(2) x,sin 2x),(sin^(2) x,cos^(2) x,1 + sin 2x)| are alpha and beta , then

int(sin^(8)x-cos^(8)x)/(1-2sin^(2)x cos^(2)x)dx

If f(x)=(sin^(4)x+cos^(2)x)/(sin^(2)x+cos^(4)x)"for "x in R , then f(2010)

Find the maximum value of 4sin^2x+3cos^2x+sin(x/2)+cos(x/2)dot

int(sin x cos x)/(a^(2)sin^(2)x+b^(2)cos^(2)x)dx

If y=(sin^(4)x-cos^(4)x+sin^(2) x cos^(2)x)/(sin^(4) x+ cos^(4)x + sin^(2) x cos^(2)x), x in (0, pi/2) , then

Solve (sin^(2) 2x+4 sin^(4) x-4 sin^(2) x cos^(2) x)/(4-sin^(2) 2x-4 sin^(2) x)=1/9 .

Find the minimum value of 2^("sin" x) + 2^("cos" x)

Compute the following: [[cos^2x, sin^2x],[sin^2 x, cos^2 x]]+[[sin^2x, cos^2 x],[cos^2 x, sin^2 x]]

(i) int(cos^(3) x+ sin^(3) x)/(sin^(2) x.cos ^(2) x)dx " "(ii) int(cos2x)/(cos^(2) x sin^(2)x) dx

ARIHANT MATHS ENGLISH-DETERMINANTS -Exercise (Subjective Type Questions)
  1. Prove that |{:(b+c,c,b),(c,c+a,a),(b,a,a+b):}| = 4 abc

    Text Solution

    |

  2. Prove: |[a-b-c,2a,2a],[2b,b-c-a,2b],[2c,2c,c-a-b]|=(a+b+c)^3

    Text Solution

    |

  3. Find the value of determinant |[sqrt((13))+sqrt(3),2sqrt(5),sqrt(5)],[...

    Text Solution

    |

  4. Find the value of the determinant |(bc,ca, ab),( p, q, r),(1, 1, 1)|,w...

    Text Solution

    |

  5. Without expanding the determinant at any stage prove that |{:(-5,3+5i...

    Text Solution

    |

  6. Prove without expansion that |a h+bgga b+c h bf+b afh b+b c af+b cc bg...

    Text Solution

    |

  7. In a triangleABC, if |(1,1,1),(1+sinA,1+sinB,1+sinC),(sinA+sin^2A,sinB...

    Text Solution

    |

  8. The value of |{:(betagamma,betagamma'+beta'gamma,beta'gamma'),(gammaal...

    Text Solution

    |

  9. If y=(u)/(v), where u & v are functions of 'x' show that v^(3)(d^(2)y)...

    Text Solution

    |

  10. Show that the determinant Delta(x) given by Delta(x) = |{:(sin(x+al...

    Text Solution

    |

  11. Evaluate |{:(.^(x)C(1),,.^(x)C(2),,.^(x)C(3)),(.^(y)C(1),,.^(y)C(2),,....

    Text Solution

    |

  12. (i) Find maximum value of f(x)=|{:(1+sin^(2)x,cos^(2)x,4sin2x),(sin...

    Text Solution

    |

  13. If f(x) = |[x^2-4x+6,2x^2+4x+10,3x^2-2x+16],[x-2,2x+2,3x-1],[1,2,3]| t...

    Text Solution

    |

  14. If |A| = 2 and A = | (2x, 6) , (5x, 1)| then find the value of x

    Text Solution

    |

  15. Show that in general there are three values of t for which the followi...

    Text Solution

    |

  16. Find dy/dx if y=13x-y^2

    Text Solution

    |

  17. If x, y, z are not all zero & if ax + by + cz=0, bx+ cy + az=0 & cx ...

    Text Solution

    |