Home
Class 12
MATHS
Find the cartesian coordinates of the po...

Find the cartesian coordinates of the points whose polar coordinates are
`(5, pi - tan^(-1)((4)/(3)))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the Cartesian coordinates of the point whose polar coordinates are given as \( (5, \pi - \tan^{-1}(\frac{4}{3})) \), we will follow these steps: ### Step 1: Identify the values of \( r \) and \( \theta \) From the polar coordinates, we have: - \( r = 5 \) - \( \theta = \pi - \tan^{-1}(\frac{4}{3}) \) ### Step 2: Calculate \( \tan(\theta) \) Using the identity for tangent, we have: \[ \tan(\theta) = \tan(\pi - \tan^{-1}(\frac{4}{3})) = -\tan(\tan^{-1}(\frac{4}{3})) = -\frac{4}{3} \] This means that: \[ \cot(\theta) = -\frac{3}{4} \] ### Step 3: Determine the sides of the right triangle From the cotangent value, we can identify the sides of the right triangle: - Base (adjacent side) = -4 (since cotangent is negative in the second quadrant) - Perpendicular (opposite side) = 3 ### Step 4: Calculate the hypotenuse Using the Pythagorean theorem: \[ \text{Hypotenuse} = \sqrt{(-4)^2 + 3^2} = \sqrt{16 + 9} = \sqrt{25} = 5 \] ### Step 5: Calculate \( \cos(\theta) \) and \( \sin(\theta) \) Now, we can find \( \cos(\theta) \) and \( \sin(\theta) \): \[ \cos(\theta) = \frac{\text{Base}}{\text{Hypotenuse}} = \frac{-4}{5} \] \[ \sin(\theta) = \frac{\text{Perpendicular}}{\text{Hypotenuse}} = \frac{3}{5} \] ### Step 6: Convert to Cartesian coordinates Using the formulas: \[ x = r \cos(\theta) \quad \text{and} \quad y = r \sin(\theta) \] Substituting the values: \[ x = 5 \cdot \left(-\frac{4}{5}\right) = -4 \] \[ y = 5 \cdot \left(\frac{3}{5}\right) = 3 \] ### Step 7: Write the final Cartesian coordinates Thus, the Cartesian coordinates are: \[ (-4, 3) \]
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|19 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos

Similar Questions

Explore conceptually related problems

The cartesian coordinates of the point whose polar coordinates are (13, pi - tan^(-1)((5)/(12))) is

Find the Cartesian co-ordinates of point whose polar co-ordinates are (4, (pi)/(3)) .

Find the polar coordinates of the points whose cartesian coordinates are (-3, 4)

Find the polar coordinates of the points whose cartesian coordinates are (-2, -2)

The polar coordinates of the point whose cartesian coordinates are (-1, -1) is

The cartesian coordinates of the point Q in the figure is

The Cartesian coordinates of point having polar coordinates (-2, (2pi)/3) will be

Convert the following Cartesian coordinates to the cooresponding polar coordinates using positive r. (i) (1,-1) (ii) (-3,-4)

Find the coor dinates of the centrod of a triangle whose coordinates are (3, -5, 7), (-1, 7, -6) and (1, 1, 2).

Find the distances of the point P(-4,3,5) from the coordinate axes.