Home
Class 12
MATHS
In a Delta ABC with vertices A(1,2), B(2...

In a `Delta ABC` with vertices A(1,2), B(2,3) and C(3, 1) and `angle A = angle B = cos^(-1)((1)/(sqrt(10))), angle C = cos^(-1)((4)/(5))`, then find the circumentre of `Delta ABC`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the circumcenter of triangle ABC with vertices A(1, 2), B(2, 3), and C(3, 1), we will use the formula for the circumcenter based on the angles of the triangle. The circumcenter (O) can be calculated using the following formulas: \[ O_x = \frac{x_1 \sin 2A + x_2 \sin 2B + x_3 \sin 2C}{\sin 2A + \sin 2B + \sin 2C} \] \[ O_y = \frac{y_1 \sin 2A + y_2 \sin 2B + y_3 \sin 2C}{\sin 2A + \sin 2B + \sin 2C} \] ### Step 1: Calculate the sine values of angles A, B, and C Given: - \( \cos A = \frac{1}{\sqrt{10}} \) - \( \cos B = \frac{1}{\sqrt{10}} \) - \( \cos C = \frac{4}{5} \) Using the Pythagorean identity \( \sin^2 \theta + \cos^2 \theta = 1 \): 1. For angle A: \[ \sin A = \sqrt{1 - \left(\frac{1}{\sqrt{10}}\right)^2} = \sqrt{1 - \frac{1}{10}} = \sqrt{\frac{9}{10}} = \frac{3}{\sqrt{10}} \] 2. For angle B (same as angle A): \[ \sin B = \frac{3}{\sqrt{10}} \] 3. For angle C: \[ \sin C = \sqrt{1 - \left(\frac{4}{5}\right)^2} = \sqrt{1 - \frac{16}{25}} = \sqrt{\frac{9}{25}} = \frac{3}{5} \] ### Step 2: Calculate sine of double angles Using the double angle formula \( \sin 2\theta = 2 \sin \theta \cos \theta \): 1. For angle A: \[ \sin 2A = 2 \sin A \cos A = 2 \cdot \frac{3}{\sqrt{10}} \cdot \frac{1}{\sqrt{10}} = \frac{6}{10} = \frac{3}{5} \] 2. For angle B (same as angle A): \[ \sin 2B = \frac{3}{5} \] 3. For angle C: \[ \sin 2C = 2 \sin C \cos C = 2 \cdot \frac{3}{5} \cdot \frac{4}{5} = \frac{24}{25} \] ### Step 3: Substitute values into the circumcenter formulas Coordinates of points: - \( A(1, 2) \) - \( B(2, 3) \) - \( C(3, 1) \) Substituting into the formulas: #### For \( O_x \): \[ O_x = \frac{1 \cdot \frac{3}{5} + 2 \cdot \frac{3}{5} + 3 \cdot \frac{24}{25}}{\frac{3}{5} + \frac{3}{5} + \frac{24}{25}} \] Calculating the numerator: \[ = \frac{3}{5} + \frac{6}{5} + \frac{72}{25} = \frac{15}{25} + \frac{30}{25} + \frac{72}{25} = \frac{117}{25} \] Calculating the denominator: \[ = \frac{3}{5} + \frac{3}{5} + \frac{24}{25} = \frac{15}{25} + \frac{15}{25} + \frac{24}{25} = \frac{54}{25} \] Thus, \[ O_x = \frac{\frac{117}{25}}{\frac{54}{25}} = \frac{117}{54} = \frac{39}{18} = \frac{13}{6} \] #### For \( O_y \): \[ O_y = \frac{2 \cdot \frac{3}{5} + 3 \cdot \frac{3}{5} + 1 \cdot \frac{24}{25}}{\frac{3}{5} + \frac{3}{5} + \frac{24}{25}} \] Calculating the numerator: \[ = \frac{6}{5} + \frac{9}{5} + \frac{24}{25} = \frac{30}{25} + \frac{45}{25} + \frac{24}{25} = \frac{99}{25} \] Thus, \[ O_y = \frac{\frac{99}{25}}{\frac{54}{25}} = \frac{99}{54} = \frac{33}{18} = \frac{11}{6} \] ### Final Result The circumcenter of triangle ABC is: \[ O\left(\frac{13}{6}, \frac{11}{6}\right) \]
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|19 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos

Similar Questions

Explore conceptually related problems

Find the angles of /_\ABC whose vertices are A((-1,3,2), B(2,3,5) and C(3,5,-2) .

The vertices of a triangle are A(1, 3, 2), B(2, -1, 3) and C(-1, 4, 2). Find the angle A.

In a triangle ABC,a/b=2+sqrt(3) and /_C=60^(@) then angle A and B is

In Delta ABC , if angle B = sec^(-1)((5)/(4))+cosec^(-1) sqrt(5) , angle C = cosec^(-1)((25)/(7)) + cot^(-1)((9)/(13)) and c = 3 The distance between orthocentre and centroid of triangle with sides a^(2) , b^(4/3) and c is equal to

In a Delta ABC b= sqrt(3)+1, c=sqrt(3)-1 , angle A = 60 ^@ then the value of tan (B-C)/(2) is :-

If in a Delta ABC, b =sqrt3, c=1 and B-C =90^(@), then angle A is

In Delta ABC , if angle B = sec^(-1)((5)/(4))+cosec^(-1) sqrt(5) , angle C = cosec^(-1)((25)/(7)) + cot^(-1)((9)/(13)) and c = 3 tan A , tan B, tan C are in

In a triangles ABC , angle A = x^(@) , angle B = (3x - 2) ^(@) and angle C = y^(@) , " Also " ,angle C - angle B = 9^(@) Find all the three angles of the Delta ABC .

In a triangle ABC, angle A = 60^(@) and b : c = (sqrt3 + 1) : 2 , then find the value of (angle B - angle C)

The vertices of a triangle ABC are A(0, 0), B(2, -1) and C(9, 2) , find cos B .